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The Math behind arbitrary precision for integer and floating 
point arithmetic. 

By Henrik Vestermark (hve@hvks.com) 
 

Abstract:  
We are all used to the fast microprocessors available nowadays and the computational speed 
of basic arithmetic, trigonometric or logarithmic functions is done at a lightning-fast speed. 
However, when building arbitrary integers and floating point packages, that can handle 
decimals in the range from a few to several million digits it is all back to the basic of math to 
build an arbitrary precision package with reasonable speed. 
This paper describes the underlying math behind this package and is a completely updated 
and expanded version of the original paper from 2013. 
 
 

Introduction: 
Building an arbitrary software package that can handle all arithmetic for integers and floating 
points for any precision, is down to the basics of simple math. This paper describes what 
formula and math that lies behind the arbitrary precision packages starting with arbitrary 
integer precision followed by the floating-point math. For the floating-point math when a 
floating-point number is broken down to its base component of <integer>, <fraction>, and 
<exponent> it too uses the integer precision math to do the calculation for the floating point. 
After the basic floating-point operators like addition, subtraction, multiplication, and division, 
we build upon these functions to implement √, Logarithm and exponential functions 
continuing with Trigonometric and Hyperbolic functions, and finalize the paper with the 
more exotic functions, like Gamma, Beta, Error,  Zeta and Lambert function. For each of the 
functions, there is a description of various optimization technics to improve performance 
particularly when needed precision exceeds 100 digits and goes into the million digits 
precision and higher.  
 

Change log 
23-February 2023. Correcting Grammar and minor corrections plus added a new section 
about the Gamma, Beta, Error, Lambert, and Zeta functions and the following special 
constants, Euler-Mascheroni, Catalan, and Apery Zeta(3). 
15-January 2023. Updated some inconsistency in the “Cos(x) using sin(x)” section and 
corrected the recommendation in the same section. 
24-October 2022. I have updated the entire document with new and updated content. It grows 
from 40 pages to more than 100 pages. The previous 2013 version has become outdated and I 
have written several papers after 2013 discussing various methods to use for elementary 
functions like exp(x), log(x), trigonometric functions, hyperbolic functions, and various 
constants like e, ln(2), ln(10) and π. This has now been consolidated into this version of the 
Math behind arbitrary precision arithmetic. The more details papers that all contain a 
reference source code in C++ can all be found on my website at  
www.hvks.com/Numerical/papers.html and are listed below: 
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1. Fast Computation of Math Constants in arbitrary precision. HVE Fast Gamma, Beta, Error, 
and Zeta functions for arbitrary precision. 

2. Fast Gamma, Beta, Error, and Zeta functions for arbitrary precision. HVE Fast Gamma, 
Beta, Error, and Zeta functions for arbitrary precision. 

3. Fast Square Root & Inverse calculation for arbitrary precision math.  HVE Fast Square 
Root & inverse calculation for arbitrary precision 

4. Fast Exponential calculation for arbitrary precision math. HVE Fast Exp() calculation for 
arbitrary precision 

5. Fast logarithm calculation for arbitrary precision math. HVE Fast Log() calculation for 
arbitrary precision 

6. Practical implementation of Spigot Algorithms for Transcendental Constants.  Practical 
implementation of Spigot Algorithms for transcendental constants 

7. Practical implementation of π algorithms. HVE Practical implementation of PI Algorithms  

8. Fast Trigonometric function for arbitrary precision.  HVE Fast Trigonometric calculation for 
arbitrary precision 

9. Fast Hyperbolic functions for arbitrary precision. HVE Fast Hyperbolic calculation for 
arbitrary precision  

10. Fast conversion from arbitrary precision number to a string. HVE Fast conversion from 
arbitrary precision to string 

11. Fast conversion from a decimal string to an arbitrary precision number. HVE Fast 
conversion from string to arbitrary precision 
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The Arbitrary precision library 
 
If you already are familiar with the arbitrary precision library, you can skip this section. 
There are two classes. One for int_precision that handle arbitrary precision integers and one 
for float_precision that handles all floating-point arbitrary precision. 
 

Int_precision class 
To understand the C++ code and text we have to highlight a few features of the arbitrary 
precision library where the class name is int_precision. Instead of declaring, a variable with 
any of the build-in integer type char, short, int, long, long long, unsigned char, unsigned 
short, unsigned int, unsigned long, and unsigned long long you just replace the type name 
with int_precision. E.g. 
 
int_precision i;  // Declare an arbitrary precision integer  
 
You can do any integer operations with int_precision that you can do for any type of integer 
in C++.  Furthermore, there are a few methods you will need to know. 
One of them is .iszero() which simply returns true or false if the int_precision variable is zero 
or not zero. Another is .even() and .odd() which return the Boolean value of the number even 
and odd status. There are other methods but I will refer you to the user manual for the 
arbitrary precision package [1]. 

Internal format for int_precision variables 
 
For the internal layout of the arbitrary precision number, we are using the STL vector library 
declared as: 
 
vector<uintmax_t> mNumber;  
 
uintmax_t is mostly a 64-bit quantity on most systems, so we use a vector of 64-bit unsigned 
integer to store our integer precision number. 
 
The method .size() returns the number of internal vector entries needed to hold the number. 
 
The number is stored such that the vector mNumber[0] holds the least significant 64-bit 
binary data. The mNumber[size()-1] holds the most significant 64-bit binary data. The sign is 
kept separately in a class field variable mSign, which means that the mNumber holds the 
unsigned binary vector data. 
 

Float_precision class 
To understand the C++ code and text we have to highlight a few features of the arbitrary 
precision library where the class name is float_precision. Instead of declaring, a variable with 
the float or double you just replace the type name with float_precision. E.g. 
 
float_precision f;  // Declare an arbitrary precision float with default precision 
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You can add a few parameters to the declaration. The first is the optional initial value, and the 
second parameter is a floating-point precision. The native type of a float has a fixed size of 4 
bytes and 8 bytes for double, however since this precision can be arbitrary we can declare the 
wanted precision as the number of decimal digits we want to use when dealing with the 
variable. E.g. 
 
float_precision fp(4.5);  // Initialize it to 4.5 with default 20 digits precision 
float_precision fp(6.5,10000); // Initialize it to 6.5 with a precision of 10,000 digits 
 
The precision of a variable can be dynamic and change throughout the code, which is very 
handy to manipulate the variable. To change or set the precision you can call the 
method .precision() E.g. 
 
f.precision(100000);   // Change the precision to 100,000 digits 
f.precision(f.precision()-10);  // Lower the precision with 10 digits 
f.precision(f.precision()+20); // Increase precision with 20 digits 
 
There is another method to manipulate the exponent of the variable. The method is 
called .exponent() and returns or sets the exponent as a power of two exponent (same as for 
our regular build-in types float and double) E.g. 
 
f.exponent();  // Return the exponent as 2exponent 

f.exponent(0)  // Remove the exponent 
f.exponen(16)  // Set the exponent to 216 
 
There is a second way to manipulate the exponent and that is the class 
method. .adjustExponent(). This method just adds the parameter to the internal variable that 
holds the exponent of the float_precision variable. E.g. 
 
f.adjustExponent(+1); //Add 1 to the exponent, the same as multiplying the number with 2.  

f.adjustExponent(-1); //Subtract 1 from the exponent, the same as dividing the number with 2 
 
This allows very fast multiplication of division with a number that is any power of two. 
 
The method .iszero() returns true if the float_precision number is zero otherwise false. 
There are additional methods, but I will refer to the reference for the user manual to the 
arbitrary precision math package for details. 
 
All the normal operators and library calls that work with the built-in type float or double will 
also work with the float_precision type using the same name and calling parameters. 

Internal format for float_precision variables 
 
For the internal layout of the arbitrary precision number, we are using the STL vector library 
declared as: 
 
vector<uintmax_t> mBinary;  
 
uintmax_t is mostly a 64-bit quantity on most systems, so we use a vector of 64-bit unsigned 
integers to store our floating-point precision number. 
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The method .size() returns the number of internal vector entries needed to hold the number. 
 
 

The Binary format mBinary 
 

 
There are other internal class variables like the sign, exponent, precision, and rounding mode 
but these are not important to understand the code segments. 
 

The normalized number for float_precision 
 
A float_precision variable is always stored as a normalized number with a one in the integer 
portion of the number. The only exception is zero, which is stored as zero. Furthermore, a 
normalized number has no trailing zeros. See [1].  
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Integer Arithmetic 
 
In integer arithmetic, we use the notation in for an n-digit integer number i where n is greater 
or equal to zero. In our description, we assume the integer is in base 10 to simplify the 
description of the math behind the scenes. However, in our actual implementation of the 
arbitrary precision packages, we use binary digits for better storage utilization (base=264 in a 
64-bit environment and base=232 in a 32-bit environment). 
Also, we denote i[n] as the most significant digit of i and i[0] as the least significant digit of 
i. The integer in can also be described for any given base as: 
 
 in=i[n]βn+ i[n-1]βn-1+…+ i[2]β2+ i[1]β1+i[0]β0 
 
For Base β=10 you get: 
 
 in=i[n]10n+ i[n-1]10n-1+…+ i[2]102+ i[1]10+i[0] 
 
For Base β=264 you get: 
 
 in=i[n](264)n+ i[n-1](264)n-1+…+ i[2](264)2+ i[1](264)+i[0] 

 
For the number in the notation i[p] for p > n always return 0.  
 

Addition: 
To implement addition we use the simple schoolbook method by adding each digit starting 
from the least significant digit of the number to the highest.  
 
Consider two positive integers an and bm, the result ck of adding an and bm together are: 
 
Algorithm: addition. 
BASE=264  
carry=0 
for(i=0..max(n,m)) 
 c[i]=(a[i]+b[i]+carry)%BASE 
 carry=(a[i]+b[i]+carry)/BASE 
if(carry !=0) 
 c[max(n,m)+1]=carry 

 
 
If either an or bm is negative we resolve the sign using the below table 

+ bm ≥ 0 bm< 0 
an  ≥ 0 C=an+bm C=an-|bm| 
an < 0 C=bm-|an| C=-(|an|+|bm|) 
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Subtraction: 
To implement subtraction we again use the simple school book method by subtracting each 
digit starting from the least significant digit of the number to the highest.  
 
Consider two positive integers an and bm the result ck of subtracting an and bm are: 
 
Algorithm: Subtraction 
BASE=264 
carry=BASE 
for(i=0..max(n,m)) 
 carry=(BASE-1+a[i]-b[i]+carry/BASE) 
 c[i]=carry%BASE 
if(carry<BASE) 
 // c is negative 
else 
 // c is positive 

 
 

If either an or bm is negative we resolve the sign using the below table 
- bm ≥ 0 bm< 0 
an  ≥0 C=an-bm C=an+|bm| 
an < 0 C=-(|an|+bm) C=-(|an|+|bm|) 

 
 

Multiplication: 
Multiplication is also trivial 
 

mnmn cba *   

 
And as for the multiplication, we divide the case into two scenarios: one where m=1 and one 
where m>1. For m=1 we use the iteration: 
 
Algorithm: Multiplication with a single digit  
BASE=264 
carry=0 
for(i=0..n) 
 c[i]=(a[i]*b[0]+carry)%BASE 
 carry=(a[i]*b[0]+carry)/BASE 
if(carry!=0) 
 c[n+1]=carry 
 
 
For m>1 we repeatedly use the above mention formula for multiplying a single digit and the 
addition of the intermediate results. 
 
Algorithm: Multiplication 
BASE=264 
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ck=an*b[0]  // Single digit multiplication 
for(i=1..m) 
 tmp=an*b[i] // Single digit multiplication 
 ck=ck+tmp*BASEi 
 
Notice that multiplying the intermediate result with BASEi is easy since you just post-fix the 
temp result with i number of zeros. The above algorithm is of complexity O(n2) and is 
typically referred to as school book multiplication. 
 
If either an or bm is negative we resolve the sign using the below table 

* bm ≥= 0 bm< 0 
an ≥ 0 C=an*bm C=-(an*|bm|) 
an < 0 C=-(|an|*bm) C=|an|*|bm| 

 
 
Schoolbook multiplication is not the fastest way to do multiplication and is easily beaten by 
the performance of other multiplication methods.  A few others are relevant to consider for 
multiplication: 
 

 Karatsuba   
 Toom-Cook 3  
 Linear convolution 
 Fast Fourier Transformation (FFT) 
 Schönhage-Strassen 
 Fürer’s method  

 
Karatsuba 
Invented in 1960 by A. Karatsuba. Before that, it was believed that it could not be faster than 
the schoolbook multiplication. Karatsuba showed that you can reduce the multiplication of 
two n-digit numbers to three multiplication and two add/subtraction instead of the usual four 
multiplication.  
 
Algorithm: Karatsuba multiplication 
function karatsuba(a,b) 
 if(a<10|| b< 10) 
  Return a*b // Do multiplication of small numbers directly 
 m=Numberofdigit(a) // NumberofDigit() return the number of digits in base 10 
 if(m>NumberofDigit(b)) 
  m=NumberofDigit(b) 
 m=integer(m/2) 
  
 // Splitting 
 [ahigh,alow]=split(a,m) // Split a into two half ahigh and alow 
 [bhigh,blow]=split(b,m) // Split b into two half bhigh and blow 
  
 // Evaluation 
 z0=karatsuba(alow,blow) 
 z1=karatsuba(alow+ahigh,blow+bhigh) 
 z2=karatsuba(ahigh,bhigh) 
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 // Recomposition 
 return (z2*102*m)+((z1-z2-z0)*10m)+z0 
 
Karatsuba algorithm reduces the complexity to O(n1.58) 
 
Toom-Cook 
The toom-Cook algorithm was invented in 1963 by A. Toom and S. Cook. Instead of splitting 
the number into two halves as used by Karatsuba, they could split it into any number k, 
however with increasing complexity. Karatsuba algorithm is equivalent to k=2 and named 
Toom-Cook-2. The most common variation is splitting the number into 3 parts (Toom-Cook-
3), however, GNU arbitrary precision also offers four parts splitting (Toom-Cook-4). 
 
The complexity of Toom-Cook-3 is O(n1.46) and Toom-Cook-4 is O(n1.40) 
 
Algorithm: Toom-Cook-3 
function toomcook3(a,b) 
 if(a<10|| b< 10) 
  return a*b // Do multiplication of small numbers directly 
 m=Numberofdigit(a) // NumberofDigit() return the number of digits in base 10 
 if(m>NumberofDigit(b)) 
  m=NumberofDigit(b) 
 m=integer(m/3) 
  
 // Splitting 
 // Split a into three half ahigh, amid and alow 
 [ahigh,amid,alow]=split3(a,m) 
  // Split b into three half bhigh, bmid, and blow  
 [bhigh,bmid,blow]=split3(b,m)  
  
 // Evaluation 
 p1=alow+ahigh+amid 
 p2=alow+ahigh-amid 
 p3=2(p2+ahigh)-alow 
 q1=blow+bhigh+bmid 
 q2=blow+bhigh-bmid 
 q3=2(q2+bhigh)-blow 
  
 // Pointwise multiplication 
 i0=toomcook3(alow,blow) 
 i1=toomcook3(p1,q1) 
 i2=toomcook3(p2,q2) 
 i3=toomcook3(p3,q3) 
 i4=toomcook3(amid,bmid) 
 
 // Interpolation 
 i3=(i3-i1)/3 
 i1=(i1-i2)/2 
 i2=-i0 
 i3=(i2-i3)/2+2*i4 
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 i2=i2+i1-i4 
 i1=i1-i3 
 
 // Recomposition 
 I1=i1*10m 
 I2=i2*102m 
 I3=i3*103m 
 I4=i4*104m 
 result=i0+i1+i2+i3+i4 
 if(sign(a)*sign(b)<0) 
  result=-result 
 return result 
 
 
Linear Convolution 
Here we do a linear convolution of the two numbers by first splitting the binary number up 
into a vector of 8-byte numbers. Then do a pointwise multiplication where we perform the 
carry operations of the linear convolution and then the last step is to combine the 8-byte 
number back into a binary number.   
 
Algorithm: Linear convolution 
function linear_convolution(a,b) 
 // Split the binary number a into an 8-byte vector of binary numbers 
 vec_a=split(a) 
 // Split the binary number b into an 8-byte vector of binary numbers 
 vec_b=split(b) 
 size_a=size(vec_a) 
 size_b=size(vec_b) 
 for(i=0..size_a) 
  for(j=0..size_b) 
   vec_linear[i+j]+=vec_a[size_a-1-j]*vec_b[size_b-1-i] 
 nextCarry=0 
 for(i=0..size_a+size_b-1) 
  vec_linear[i]+= nextCarry 
  nextCarry=vec_linear[i] / 256 
  vec_linear[i] = vec_linear[i] % 256 
 if(nextCarry>0) 
  vec_linear[i+1]=nextCarry % 256 
 // Combine the 8-byte binary number to a binary number 
 return combine(vec_linear)  
 
In the algorithm above we use a sample size of a single byte. It is not optimal to split floating-
point variables into chunks of bytes. You can improve the performance by sampling at 16-bit 
or 32-bit at a time. The benefit is that the double for loop needs to pass through fewer entries. 
However, you risk an overflow even when using 64-bit internal multiplication. If you use 16-
bit or 32-bit sampling size you would need to be able to handle overflow which needs to be 
propagated in the vec_linear vector. Our implementation in our arbitrary precision library 
uses a sample size of 32-bit. 
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Fast Fourier Transformation (FFT) 
It is beyond the scope of this paper to explain the theory behind FFT multiplication, but 
readers can reference [2] for more information. However, you convert the two numbers an 
and bm via a series of Fourier transformations then multiply them together and do the inverse 
Fourier transformation of the result back to the digital domain.  
FFT complexity is O(n*log(n)) and thereby preferable over the other multiplication method. 
 
Algorithm: FFT  
function FFT(a,b) 
 length=max(size(a),size(b) 
 for (n = 1; n < length; n <<= 1) ; 
 n <<= 1;  // Ensure n is a true power of 2 and larger than length 
 vec_a=split(a)  // Split an into bytes and return it as a vector of doubles 
 vec_b=split(b)  // Split bm into bytes and return it as a vector of doubles 
 DFT(vec_a,n,1) // 1 indicate forward transformation of a vector 
 DFT(vec_b,n,1) // 1 indicate forward transformation of b vector 
 // Do multiplication and stored the result in vec_b 
 vec_b[0] *= vec_a[0] 
 vec_b[1] *= vec_a[1] 
 for (i = 2; i < n; i += 2)  
  t = vec_b[i] 
  vec_b[i] = vec_b[i]*vec_a[i]–vec_b[i+1]*vec_a[i+1] 
  vec_b[i+1] = t*vec_a[i+1]+vec_b[i+1]*vec_a[i] 
 DFT(vec_b,n,-1) // -1 indicate Reverse transformation 
 // propagate carry  
 for (cy = 0, i = 0; j <= n - 1; ++i) 
  tmp = vec_b[n-1-i]/(n>>1)+cy+0.5 
  cy = (unsigned long)(tmp/256)  // Byte Radix 2^8 =256   
  vec_b[n-1-i] = tmp-cy*256; 
 result=compose(b) // Compose it back to the binary number format 
 return result 
Note: the DFT function is the discrete Fourier transformation, see [2] for the actual C source 
code. 
 
Limitation of FFT  
FFT uses floating-point arithmetic using the double type in C++. In the initial step, you 
would need to map the vector of binary 64-bit digits into a double. You do that by splitting 
each 64-bit binary digit into eight bytes and then converting each byte into a double. Because 
we use floating-point arithmetic in FFT we need to be careful with how large the two 
numbers we multiply can be. In [2] they give a formula for the number of decimal digits n, 
the FFT can handle without inaccuracy in the result as a function of the initial splitting into 
bytes and how large our double mantissa is in bits (53-bit in a C++ double) 
 
 log2((Sample size)2) +log2(n)+k∙log2(log2(n))< 53     ( 1) 
 
E.g., a byte (8-bit) has a sample size of 28=256. Where k is “a few”. Let’s choose k=2 we get 
for n=100,000,000 (100 million) that 52<53 which is true. 
 
If we solve the above equation for n, we get an n of approx. 175M digits. Unfortunately, k as 
two is not enough since we begin to get random errors in the multiplications result around 
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multiplication with 125M digits. Instead, I recommend you use k as a factor of 2.15 and you 
get a maximum limit of multiplication size of around 116M digits.  
That leads to the question of what to do if you need a higher number of digits in 
multiplications. An easy fix is to lower the sample size to 4-bit instead of 8-bit. Using the 
above formula again, you get a maximum of 17.8 billion digits you can multiply. If that is 
still not enough you can do a 2-bit sample size and get a limitation of 229 billion digits. 
Every time you lower the sample size by half it will increase the memory requirements by 
four reducing the overall performance of FFT multiplication. If you go the other way and use 
a sample size of 16-bit, you get a limitation of approx. 8,396 digits, which is excessively 
small to be useful in practice.  
 
The limitations can vary depending on which system you are running and if they support 
floating-point arithmetic above 64-bit. IEEE-754 does specify an extended 80-bit version 
sometimes going under the name of long double. (Not all compiler supports it, so the author's 
arbitrary precision packages only support the standard 64-bit double) 
 
Limitations in FFT 
C++ type Double Long double* 
Bits in Mantissa 53-bit 64-bit 
Sample size   
16-bit 8,396 5.3M 
8-bit 116M 120B 
4-bit 17.8B 20T 
2-bit 229B 280T 

*) Not supported on all compilers and systems 
 
 
Schönhage-Strassen 
This algorithm was invented in 1971 by A. Schönhage and V. Strassen. The Complexity is 
O(n*log(n)*log(log(n))). Again it is beyond the scope of this paper to give a detailed 
introduction to this method.  
 
Fürer’s Method 
Has an even lower complexity than Schönhage-Strassen. However, is usually not seen in 
practice since it is only faster when dealing with extremely high precision. 
 

Division & Remainder: 
 
There are several approaches you can take to calculate the division.  
In its simple form solving: 

𝑎௡

𝑏௠
 

 
You can repeatedly subtract bm from an until the condition an<bm is met and then the number 
of times you could subtract bm is the integer result of this division. an is called the dividend 
(or numerator)  and bm is called the divisor or denominator. The result of the division let’s 
call it ck is the quotient of the division. If the continuing subtraction of bm into an does not 
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result in an=0 then an contains the remaining portion of the division and lets called is dj. For 
shorthand, this is sometimes written as: 
 

𝑎௡

𝑏௠
= 𝑐௞  𝑅𝐸𝑀 𝑑௝ 

 
If bm is a single digit we do it by school book manner by dividing the single digit b0 
into an starting at the most significant digit of a[n]. The result is the most significant digit of 
the quotient c[k]. Then add the remaining of that division into a’s second most digit and 
repeat the process until all an digit has been divided.  Now ck is the quotient of the division 
and the last remaining digit is then dj. 
 
Algorithm. Division with a single digit 
BASE=264 
rem=0 
for(i=0..n) 
 c[i]=(BASE*rem+a[i])/b[0] 
 rem=(BASE*rem+a[i])%b[0] 
 
Now if bm is more than a single digit (m>1) we could resort to the process of subtracting bm 
from an. 
 
Algorithm. Division & Remainder  
ck=0 
while(an>bm) 
 an=an-bm 
 ck=ck+1 
dj=an  // ck is the result of the division and dj is the remainder 

 
However, we quickly find out that we will run into a problem when dividing a large number 
an that is several magnitudes higher than bm. E.g. let’s assume that an is a number with 8 
digits or a8 magnitude is in the range of 108 and bm is a two digits number of magnitude 102 
then you will have to loop through the subtraction approx. 108-2 or 106 times which is doable 
but time-consuming. If instead, we are dealing with a number an that is a 100-digit number 
then the looping will be in the order of 1098 Subtractions, even if we can do a subtraction in 
10-6 seconds then it will still take us 10+92 seconds or approx. 1083 years, which clearly will 
get us nowhere. 
Instead, we use the fact that multiplication is much faster than division. Let’s say that an is an 
n-digit number and bm is an m-digit number and of course n>m then instead of subtracting bm 
we try to subtract bm*BASEn-m.  If bm*BASEn-m is less than an then we have replaced BASEn-

m subtractions with one subtraction and one multiplication. This subtraction effectively 
ensures that the number an now is one digit less than n and the next subtraction can then be 
with BASE*BASEn-1-m  Repeating this process you get an approx. the number of loops and 
operation of the multiplication and subtraction as ~ 2(n-m). We cannot always assume that 
bm*BASEn-m is less than an in which case we subtract bm*BASEn-m-1 instead. This lead to a 
worst-case scenario that is 10 times higher than the approximation we found before or ~ 
20(n-m). Therefore, instead of 1092 seconds, we have reduced the workload to something 
around ~ 0.002 seconds. If an is a number with 1 million digits the time will be ~ 20 seconds 
or 1 billion digits it will be 20,000 seconds, fast but not fast enough.  Therefore, we use the 
last trick we have for division and that is to use the iterative method for division used with 
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floating point division. (See floating point division). We simply convert our integer numbers 
an and bm to floating point numbers with n decimals, do the division using the iterative 
division method (describe later) and then convert the division result back to an integer. 
Instead of linear scaling of operations with the number of digits, we get a logarithm scaling of 
the number of operations, which is of course much faster. 
 
If either an or bm is negative we resolve the sign using the below table 

/ bm ≥= 0 bm< 0 
an ≥ 0 C=an/bm C=-(an/|bm|) 
an < 0 C=-(|an|/bm) C=|an|/|bm| 

 

Proper detection of a carry 
We have not addressed the issue of proper detection of a carry. The above algorithm for 
addition, subtraction, and division assumed that we could detect overflow by just dividing the 
operations performed with the BASE, which in our case is 264. In a 64-bit environment, the 
largest unsigned number is 264-1, which means we technically cannot perform the algorithms 
stated above. For the algorithm to work the BASE, need to be less than 264. Since you can 
define the arbitrary precision arithmetic with any BASE you can just choose a “nice” number 
less than 64.e.g. BASE=260. That way you have allocated the four top bits of a 64-bit integer 
to be used for carry detection. Of course, this is less storage efficient. Consider a 1,000 
decimal number in a 64-bit environment. If BASE=260 it will require a vector of 56 64-bit 
integers to store the number. However, if BASE=264 it will require only 52 64-bit integers to 
store the number. This means that a BASE of 260 will require ~7.7% more storage to hold it 
over a BASE of 264. Since we prefer to make the best utilization of available storage, we 
would prefer a BASE of 264. Now how do we detect overflow in such an environment?  We 
can use a trick here that if you add two numbers e.g. c=a+b. If the addition overflow it will 
always result in c less than either a or b and we can use that fact to test for overflow.  
 
Algorithm: Carry detection in addition. 
c=a+b 
if(c<a) // It could also be: if(c<b) 
 carry=1 
else 
 carry=0 
 
Example: Assuming a BASE=10 (single-digit system) 
a=6, b=4  // Will result in overflow  
c=a+b=6+4=10 // The 1 digit is discarded and stroked out 
if(c<a)   // 0<6 
 carry=1 // Yes carry was detected 
else 
 carry=0 // No vary was not detected. 
 
if a=5 then c=9 and 9<6 is false and therefore no carry is detected. 
 
However, in our algorithm, we did have two addition: a+b+carry (the previous carry 
propagated forward). Technically we can get an overflow from either tmp=a+b  or 
c=tmp+carry but not both. That is easy to convince yourself of. Assuming BASE=10 as 



The Math behind arbitrary precision 
 

23 February 2023       www.hvks.com/Numerical/arbitrary_precision.html Page 20 
 

before and a=b=9 (maximum single digit) the first addition tmp=a+b=9+9=18 with a carry 
detected and the result is 8. Now carry can have either a zero or one value and even with 
carry = 1 the next addition tmp=tmp+carry can at maximum yield 8+1=9 with no carry from 
that operation.  
Assuming that a+b does not generate a carry but gets a maximum value of 9. If the carry from 
the previous operations was set then you will have tmp=9+carry=9+1=10 since the result 0 is 
less than either 9 or 1 then there is a carry detected that can be propagated forward. 
 
Algorithm for carry detected in addition 
BASE=264  
carry=0 
for(i=0..max(n,m)) 
 c[i]=a[i]+carry 
 if(c[i]<a[i]) carry=1 else carry=0   // Set or reset carry 
 c[i]=c[i]+b[i] 
 if(c[i]<b[i]) carry=1   // Set carry or keep carry 
if(carry !=0) 
 c[max(n,m)+1]=carry 
 
Algorithm for carry detection in subtraction 
borrow=0 
for(i=0..max(n,m)) 
 c[i]=a[i]-(b[i]+borrow) 
 if(a[i]<b[i]+borrow) borrow=1 // Set borrow 
 else if([i]!=0) borrow=0   // Reset borrow or keep borrow 

if(borrow!=0)  
 //result underflow 
else 
 // Result OK  
 
With this form of carry detection, we can now utilize the full amount of memory regardless 
of any bit-size environment (32-bit or 64-bit). 
 

Useful functions for integer arithmetic 
 
Several useful functions are typically presented in arbitrary precision packages.  These are: 
 

 Integer power xy 
 Integer power xy % z 
 gcd(a,b)  // Greatest Common Divisor 
 lcm(a,b)  // Least Common Multiple 

 
 

Integer power xy: 
To calculate xy where both x and y are integers we of course do not multiply x with x, y times. 
Instead, we use the entity when y is an even number: 
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Algorithm for ipow(x,y) 
ipow(x,y) 
 r=1 
 while(y>0) 
  if(y is odd) 
   r=r*x 
  x=x*x 
  y=y/2 
 return r 

 
 
Integer power xy modulus z 
Where x, y, and z are all integers. Instead of first calculating xy and then taking the modulus 
z, which can lead to a very high number of digits for the interim result, and then carrying out 
the modulus z to get the answer. E.g. 21000000 is around a number with over 300,000 digits and 
then taking the modulus of z e.g. 77 can be very time-consuming since we first have to build 
a digit with over 300,000 digits and then apply the modulus operator that is a very costly 
operation (see discussion under division and remaining).   
To avoid large numbers we can incorporate the modulus operator into our calculation of xy to 
avoid dealing with a high number of digits in the interim result and we get the following 
algorithm: 
 
Algorithm for ipow_mod(x,y,z) 
ipow_mod(x,y,z) 
 r=1 
 x=x%z 
 while(y>0) 
  if(y is odd) 
   r=r*x 
   r=r%z 
  x=x*x 
  x=x%z 
  y=y/2 
 return r 
 
 
Greatest Common Divisor (GCD) 
The Greatest Common Divisor (GCD) is the largest positive integer that divides both a and b. 
Very commonly used and is part of any arbitrary precision packages. 
 
Algorithm: gcd(a,b) 
gcd(a,b) 
 while(b>0) 
  tmp=b 
  b=a%b 
  a=tmp 
 return a 
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The above version has the deficit that uses the % operator which is notorious time-consuming 
in arbitrary precision. Instead, it is better to use the “binary” version that only required 
subtraction and shifting which are considered fast operations in arbitrary precision. 
 
Algorithm binary gcd_binary(a,b) 
gcd_binary(a,b) 
 tmp = a | b 
 shift = ctz(tmp) // ctz returns the number of least significant zero bits 
 a >>=ctz(a)  // ctz returns the number of least significant zero bits 
 do  
  b >>= b.ctz(); 
  if (a > b)  
   tmp = b 
   b = a 
   a = tmp 
  b -= a; 
 while (b != 0); 
 return a << shift; 
 
Least Common Multiple (LCM) 
The Least Common Multiple is the smallest positive integer that is divisible by both 
arguments and it will internally also use the gcd() algorithm. 
 
Algorithm lcm(a,b) 
lcm(a,b) 
 gcd_ab = gcd(a, b); 
 a /= gcd_ab; 
 a*= b; 
 return a; 
 

Performance of Arbitrary Integer precision: 
 
Below show the performance of the integer precision. Y-axis is a logarithm scale of the 
number of operations per second (Ops). X-axis is the number of digits. For 
add/subtract/multiplication both operands is of the same number of digits. For the division, 
the denominator has half as many digits as the dividend. 
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Integer Operation per second vs. number of digits 
 
It is not a surprise that addition and subtraction are the faster operations. 
For multiplication, the use of multiplication via linear convolution is the fastest multiplication 
for smaller numbers up to approx. 5,000-6,000 digits where after multiplication using FFT 
takes over. This is expected. It takes some initial code to set up an FFT multiplication and 
that is why it first takes over around the 5,000-6,000 digits mark. Division and remainder as 
expected is the most time-consuming task and are many times slower than multiplication. The 
lesson learned is that you should try to avoid division as much as possible. This knowledge 
comes into play when using the Taylor series for exponential, logarithm, Trigonometric, and 
Hyperbolic functions where we will use a technic called coefficient scaling to lower the 
number of divisions in the Taylor series. 
 
Below is a table where we set the addition/subtraction to 1 and the others are scaled after that. 
 

Performance ratio Digits 
    

 100 1,000 10,000 100,000 1,000,000 
Addition/Subtraction 1 1 1 1 1 
Multiplication-School 14 500 12,198 67,167 851,389 
Multiplication-FFT 24 153 1,021 560 766 
Multiplication-Karatsuba 61 1,670 20,330 44,727 211,379 
Multiplication-Linear 2 89 2,623 14,452 161,316 
Multiplication-TC3 500 16,445 162,641 246,703 901,471 
Division 274 3,392 44,357 168,454 1,915,625 

We notice that schoolbook multiplication is of no use in arbitrary precision arithmetic. FFT is 
the way to go above 5,000-6,000 digits. Below that multiplication, using linear convolution is 
the fastest. An implementation should automatically determine which multiplication method 
to use based on the size of the integer in digits. Both the Karatsuba and Toom-cook3 
performed slower than the FFT algorithm.   
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The surprise is division. We expected it to be slower but it is many times slower than any of 
the other operations. Particularly when you scale the number of digits.  I recommend that for 
integer division (unless it is simple) you consider switching to a floating-point division since 
it scales many magnitudes better than the integer division for arbitrary precision (see later). 
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Floating-point arithmetic: 
 
In arbitrary precision, a floating-point number can be described by the following components: 
 

 The sign 
 The integer part of the number 
 The fraction part of the number 
 The exponent of the number 
 The precision (since that is dynamic in arbitrary precision) 
 The rounding mode (optional if there is a need for various rounding modes) 

 
You can use a decimal representation where the integer and fraction part is stored as decimal 
strings (usually in base 10) or as binary numbers (base 2 as the native CPU supports).  
Furthermore, we store the float_precision number as normalized binary numbers in the 
format: 
  
 𝐹𝑙𝑜𝑎𝑡𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟:  𝑠𝑖𝑔𝑛 ∙ 𝑖ଵ ∙ 𝑓௡ ∙ 𝛽௘೛     
 
Where the sign is either + 1: -1. For the special case where the floating-point number is zero, 
we force the sign to be +1 meaning that -0 is not a valid number.   
Where i1 indicates that there is only one digit as the integer part. 
Where fn indicates that there are n digits in the fraction part. 
Where ep indicated that the exponent contains p digits.  
In addition, β is the base typically base2 for a binary implementation. 
 
You could have other arrangements for your internal floating-point presentation, however, 
this is the one chosen for the author's arbitrary precision packages. 
 
Furthermore, for efficiency, you do not store the integer part and the fraction part in separate 
internal variables (although you could). Since a normalized number always has one digit (in 
base 2 or the number 1-9 in base 10) as the integer part, we can store the entire number in one 
variable. 
In our actual implementation of the arbitrary precision packages, we use a vector of binary 
digits for better storage utilization where the base=264 in a 64-bit environment and base=232 
in a 32-bit environment. 
Lastly, the exponent is stored as a single 64-bit signed number, which should be more than 
adequate to hold any exponent for an arbitrary precision number. 
 
 For base 10 you get: 
 
 𝐹𝑙𝑜𝑎𝑡𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟:  𝑠𝑖𝑔𝑛 ∙ 𝑖ଵ ∙ 𝑓௡ ∙ 10௘೛     
 Example: 1.234E2 
 I1=1 
 F3=234 
 Ep=2 
 

The normalized number for float_precision 
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A float_precision variable is always stored as a normalized number with a one in the integer 
portion of the number (for binary implementation and 1-9 in decimal implementation). The 
only exception is zero, which is stored as zero. Furthermore, a normalized number has no 
trailing zeros in the fraction part. [1]. 
 
If i1 is outside this range the number is un-normalized. With any of the arithmetic operations, 
the intermediate result can be an un-normalized number. However, our arbitrary precision 
packages always guaranteed that the result of any arithmetic operations would always be 
returned as a normalized number. 

Mixed Precision for float_precision  
 
Since our floating-point number can be of different precision and we of course allow mixed 
precision for our arithmetic operators, it is important to understand how the precision works. 
In any assignment statement (C or C++ language) =, +=, -=, *=, /=,%= the resulting precision 
is always the precision of the variable on the left-hand side of the operator and if necessary 
the expression on the right-hand side is rounded accordingly. For binary operator like 
+,-,*,/,%. The mixed precision is handled by always aligning the argument on both sides of 
the operator to the argument that has the highest precision. E.g. in an expression of a+b 
where a is a 3-digit precision number and b is a 5-digit precision number, the operations a+b 
are carried out using 5-digit precision. 

Rounding control for float_precision 
 
Rounding control: The default is, of course, rounding to the nearest but the arbitrary precision 
packages also allow you to control the rounding process by rounding towards zero, rounding 
up, and rounding down in the same way as implemented in a microprocessor. Controlling the 
rounding makes it very easy to implement interval arithmetic (which is also part of this 
arbitrary precision package). 

Addition: 
 
When adding two floating-point numbers an and bm. The fraction part can have different 
precision and the exponent part can be different as well. To do addition we first align the two 
numbers exponent to the same exponent. This is done by aligning the number with the lowest 
exponent to the highest exponent by adding leading zeros to the number with the lowest 
exponent.  
E.g. an=1.2345E5 and bm=6.78E1 
We align bm to the same exponent of an by adding leading zeros to the number: 
 an=1.2345E5 bm=0.000678E5 
The next issue is that the two numbers can be of different precision, this is no different than 
in the standard C programming language you can have a floating number float type which is 
32-bit precision, and a double type which is 64-bit precision. The rule for mixed floating 
point arithmetic dictates that when two numbers are of different precision the number with 
the lowest precision is first converted to the same precision as the number with the highest 
precision and then the operation is performed. E.g. using our two numbers where an is a 5-
digit precision and bm is now a 7-digit precision number we then align it to the 7-digit 
precision.  an=1.234500E5 and bm=0.000678E5 
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Now we can add the two numbers together: 
 

  

5235178.1

5000678.0

5234500.1

E

E

E


  

 
The addition is performed in the same way as for integer arithmetic. After the addition, we 
can then round the result back to the precision of a (5 digit) and we get 1.2352E5. 
Now sometimes the intermediate result can be an un-normalized number e.g. adding two 2-
digit precision numbers 9.5E0+2.4E0=11.9E0 but we then normalized and rounded the 
number to 2-digit precision: 1.2E1. 
 
If either an or bm is negative we resolve the sign using the below table as we did for integer 
arithmetic. 

- bm ≥ 0 bm< 0 
an  ≥0 C=an-bm C=an+|bm| 
an < 0 C=-(|an|+bm) C=-(|an|+|bm|) 

 
Here is an example of how the process is working. The number an is a four-digit precision 
number (1.235E+3) and bm is a 2 digits precision number (-2.4E0) in the operation a+=b.  
 
Step 1: Extract the sign, number, and exponent from the numbers. 
Step 2: Align mantissa to max exponents. 
Step 3: Align a; to the current temporary precision, which is five due to the alignment of the 
number of b.  
Step 4: Perform the addition of a and b. 
Step 5: Round the result to four digits precision (a’s precision). 
Step 6: Reapply the exponent from a and the result is 1.233E+3. 

 A + B = C 

Number  1.235E+03  -2.4E+00   
Precision 4  2   
Sign +  -   
Mantissa 1.235  2.4   
Exponent 3  0   
      
Align to max exponents 1.235  0.0024   
Align precision 1.2350  0.0024   
Add the two numbers     1.2326 
Round to precision     1.233 
Reapply exponent     1.233E+3 

*) Addition is done using the same code as for integer arithmetic. 

Subtraction: 
 
Is done using the addition function since a-b is the same as a+(-b). We simply just change the 
sign on b and then call the addition function.  
Using the same example as under the addition section we get: 
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Subtraction A - B = C 
Number  1234.56  -2.4   
Precision 4  2   
Sign 1  -1   
Mantissa 1.235  2.4   
Exponent 3  0   

      
Align to max exponents 1.235  0.0024   
Align precision 1.2350   0.0024   
Subtract the two numbers     1.2374 
Round to precision     1.237 
Reapply exponent     1.237E+3 

*) the subtraction of the two numbers is done using the same code as for integer subtraction 

Multiplication: 
 
As for multiplication, we have a choice of different multiplication methods. (Same choice as 
mentioned under integer arithmetic.) We have previously found that the linear convolution is 
the fastest for a smaller number of precisions (up to 5,000-6,000 digits) where the FFT 
multiplication takes over. See the description of integer multiplications for details. 
Before we call the FTT function, we strip off the sign and exponent and then use the resulting 
sign as follows 
. 

* bm ≥= 0 bm< 0 
an ≥ 0 C=an*bm C=-(an*|bm|) 
an < 0 C=-(|an|*bm) C=|an|*|bm| 

 
Moreover, for the exponent we simply add them together since:  
 

𝑎10௘ଵ ∙ 𝑏10௘ଶ = (𝑎𝑏)10௘ଵା௘ଶ 
 
Now since we compute the FFT using IEE754 arithmetic and we know that for a 64-bit 
floating point, we have 53 bits in the floating point mantissa we can then derive a bound for 
how large a number we can multiply using only 64-bit FFT transformation. This is the same 
bound as the outline under integer multiplication. 

Division: 
 
To handle floating-point division we rewrite the equation a/b to a(1/b). Multiplication is a 
much faster operation than division so it makes sense to do it this way. Now we only need to 
figure out how to quickly calculate the inverse of b=(1/b). This same issue faces many 
microprocessors or early RISC (Reduced Instruction Set CPU) that did not have hardware 
support for the division operator. Instead, they use a Newton iteration using the following 
algorithm for calculating 1/b: However, there exist other higher-order methods that we will 
examine in this chapter and are detailed in [8]. 
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Newton's method for inverse 
We can use a classic Newton iteration using the following algorithm for calculating 1/b: 
 

𝑥௡ାଵ = 𝑥௡(2 − 𝑥௡𝑦)      ( 3) 
 

𝑊ℎ𝑒𝑟𝑒 𝑦 = 𝑏 𝑎𝑛𝑑 𝑥଴ ≈
1

𝑏
 (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑢𝑒𝑠𝑠) 

𝑎𝑛𝑑 𝑥௡ 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 
1

𝑏
 

Algorithm 1 
 
Traditional this method has been used due to its simplicity  

This can also be found the following way by restating the problem of finding y
x


1
. 

Applying it to the Newton method, you get: 
 

Where 𝑓(𝑥) = 𝑦 −
ଵ

௫
,   𝑓ᇱ(𝑥) =

ଵ

௫మ 

 

𝑥௡ାଵ = 𝑥௡ −
𝑦 −

1
𝑥௡

1
𝑥௡

ଶ

=> 

𝑥௡ାଵ = 𝑥௡ − 𝑥௡
ଶ ൬𝑦 −

1

𝑥௡
൰ => 

 
𝑥௡ାଵ = 𝑥௡ − 𝑥௡(𝑥௡𝑦 − 1) => 

 
 

𝑥௡ାଵ = 𝑥௡(2 − 𝑥௡𝑦)     ( 4) 
 
Notice the algorithm only requires us to do one subtraction and two multiplications per 
iteration. 
 
Example of Newton for inverse 
To see how this algorithm works let us find the inverse of 1.6 using an initial start guess of 
0.1.  
 

y= 1.6   
x0= 0.1   

n x Error 
1 0.184 4.4E-01 
2 0.31383 3.1E-01 
3 0.470078 1.5E-01 
4 0.586598 3.8E-02 
5 0.622641 2.4E-03 
6 0.624991 8.9E-06 
7 0.625 1.3E-10 
8 0.625 0.0E+00 
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After eight iterations, the difference between the iteration and the build-in division operator is 
zero and the result of 1/1.6 is 0.625.   
 
Now the only question that remains is how to find a suitable starting point for the iteration 
since we cannot perform an initial division as the guess of 1/b. Instead, we look at how our 
arbitrary precision number is built up. i1 is the one-digit integer and fn is the n fraction parts 
digits, ep is the exponent power in base 2. 
 

ଵ

௕
=

ଵ

௜భ∙௙೙ଶ೐೛
=

ଵ

௜భ∙௙೙
2ି௘೛        ( 5) 

 

We can extract the exponent portion and find the inverse 
nfi .

1

1

and then multiply the result 

with 2ି௘೛ to find our inverse of 1/b. Extracting the exponent will leave us with a number 
[1..2[. Since we do have the support of hardware division using the IEE754 standard (a 64-bit 
floating-point number) we can get our initial start guess with approximately 15-16 digits 
accuracy and then begin to iterate towards a higher number of accuracy. In case you do not 
have access to IEEE754, you can do a lookup table to find a suitable starting point. 
 
The Newton method for division is very fast and has quadratic convergence meaning that for 
each iteration we will double the number of correct digits. To set this into perspective, 
assume we have a number with 128 digits (27) and we start with approx. 24 correct digits then 
we should expect only three iterations to get our result. For 1,000 digits it will require approx. 
six iterations and for 1,000,000 digit precision approx. sixteen iterations. 

 
Cubic convergence method for inverse 
A higher-order Newton-like method exists with a cubic convergence rate.  We can iterate 
toward the inverse by using the following:  
 

𝑥௡ାଵ = 𝑥௡ + 𝑥௡(1 − 𝑦𝑥௡) + 𝑥௡(1 − 𝑦𝑥௡)ଶ      ( 6) 
 
We notice that compared to the Newton method we have an extra addition of 𝑥௡(1 − 𝑦𝑥௡)ଶ 
which adds one extra addition and one extra multiplication.  
 
Alternatively, the iteration can be written as: 
 

𝑧௡ = 1 − 𝑦𝑥௡ 
𝑥௡ାଵ = 𝑥௡ + 𝑥௡(𝑧௡) + 𝑥௡(𝑧௡)ଶ    ( 7) 

Algorithm 2 
 
It can be found using Householders 2nd order method: 
 

𝑥௡ାଵ = 𝑥௡ −
௙(௫೙)

௙ᇲ(௫೙)
−

௙(௫೙)మ௙ᇱᇱ(௫೙)

ଶ௙ᇱ(௫೙)య        ( 8) 

 

Where 𝑓(𝑥) = 𝑦 −
ଵ

௫
,   𝑓ᇱ(𝑥) =

ଵ

௫మ
,   𝑓ᇱᇱ(𝑥) = −

ଶ

௫య
 

 
This yield: 
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𝑥௡ାଵ = 𝑥௡ −
𝑦 −

1
𝑥௡

1
𝑥௡

ଶ

−

ቀ𝑦 −
1

𝑥௡
ቁ

ଶ

(−
2

𝑥௡
ଷ)

2 ൬
1

𝑥௡
ଶ൰

ଷ => 

 

𝑥௡ାଵ = 𝑥௡ + 𝑥௡
ଶ ൬

1

𝑥௡
− 𝑦൰ + 𝑥௡

ଷ(
1

𝑥௡
− 𝑦)ଶ => 

 
𝑥௡ାଵ = 𝑥௡ + 𝑥௡(1 − 𝑦𝑥௡) + 𝑥௡(1 − 𝑦𝑥௡)ଶ   ( 9) 

 
This method will require one subtraction, two addition, and four multiplication. 
 
We could be tempted to factor out the xn-1 as outlined below: 
 

𝑧௡ = 1 − 𝑦𝑥௡ 
𝑥௡ାଵ = 𝑥௡(1 + 𝑧௡ + (𝑧௡)ଶ)     ( 10) 

 
This will require three addition/subtraction and three multiplication. However, all the 
multiplication needs to carry out using full precision. 
 
The cubic convergence rate means that for each iteration you triple the number of correct 
digits requiring fewer iterations than the Newton method. 
 
Example of Cubic method for inverse 
To see how this algorithm works let us find the inverse of 1.6 using an initial start guess of 
0.1.  
 

y= 1.6   
x0= 0.1   

n x Error 
1 0.25456 3.7E-01 
2 0.494865 1.3E-01 
3 0.619358 5.6E-03 
4 0.625 4.6E-07 
5 0.625 0.0E+00 

 
 
Which method for the inverse? 
Both Newton (second order) and the cubic (third order method) have advantages and 
disadvantages. If you begin to measure the performance, you will notice that sometimes the 
Newton method is faster, and sometimes the cubic method is faster. It all boils down to how 
many iterations you need. Now a third-order method requires 1.58 iterations less than a 
second-order method.  However, you cannot do a fraction of iterations since it has to be an 
integral number. To get the best of both worlds we have chosen a hybrid implementation 
where we pre-calculate the number of expected iterations for each method and then round it 
up to the nearest higher integer number. Divide the number of Newton iterations by the 
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number of cubic iterations. If the division is > 1.58 then we choose Cubic iterations. If less or 
equal (<=1.58) we choose the Newton method.   
 

Performance of Arbitrary Floating point precision: 
 
Below show the performance of the floating-point precision. Y-axis is a logarithm scale of 
the number of operations per second (Ops). X-axis is the number of digits. For 
add/subtract/multiplication both operands is of the same number of digits. For the division, 
the denominator has half as many digits as the dividend. 
 

 
Floating point Operations per second versus No of Digits 
Not surprisingly the performance ratio between addition/multiplication and division increases 
with a higher number of digits in arithmetic operations. 
 

Performance ratio Digits     
  100 1,000 10,000 100,000 1,000,000 
Addition/Subtraction 

 
1 1 1 1 1 

Multiplication-School 4 65 3,653 33,345 359,302 
Multiplication-FFT 9 27 324 289 404 
Multiplication-FFT4 170 55 704 555 914 
Multiplication-Linear  2 14 845 7,375 85,833 
Division 

 
17 58 4,246 3,727 2,272 

 
We notice that old fashion school book multiplication doesn’t scale well with a higher 
number of digits and it is not useful for arbitrary precision arithmetic. Multiplication using 
FFT is the way to go beyond 5,000-6,000 digits. Below 5,000 digits multiplication using 
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linear convolution is the fastest choice. The FFT-4 is performance measured with only a 4-bit 
sample size instead of the usual 8-bit sample size for FFT multiplication. 4-bit is needed 
beyond 116M digits and due to the lower sample size, your performance drops by a little 
more than a half. 
The big surprise is division. It is still much slower than multiplication but significantly faster 
than the division algorithm for integer arithmetic. Therefore we recommend when needing to 
perform integer division that the integer is converted to a float_precision variable, then divide 
using the float_precision division, and then convert back to an integer precision variable. 
(conversion back and forth between an int_precision variable and a float_precision variable is 
very fast). In general, the performance graph shows that it is wise to avoid the division at 
nearly all costs. 
 

Needed extra functionality 
 
In the previous section, we establish the four basic arithmetic operations: Addition, 
Subtraction, Multiplication, and Division. These are the basic blocks for all arbitrary 
precision arithmetic. The basic block is used to implement other mandatory functions for 
arbitrary precision math packages. These functions are: 
 

 Square roots 
 Elementary functions: 

o Exponential function. 
o Logarithms functions 
o Power functions xy 
o Universal constants 

 e, π, ln2, ln10 
 Trigonometric functions 

o Sine, Cosine, Tangent, Arcsine, Arccosine, Arctangent 
 Hyperbolic functions 

o Sinh, Cosinh, Tanh, ArcSinh, ArcCosh, ArcTanh 
 Special functions 

o Gamma, Beta, Zeta, Error, Lambert W functions, and others  
 Special constants  

o Euler-Mascheroni, Catalan, and Apéry Zeta(3) 
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Square root: 
 
There exist several methods to compute the square root. Among them are: 
 

1) Newton’s Method. 
2) Halley’s Method. 

 
The most common one for arbitrary precision libraries is the Newton method. A more 
detailed description can be found in [8] together with source code, performance charts, etc. 
Also [4] is a good reference for square roots calculation. 
 
Newton's Method for square root 
For the function sqrt(y) we can use a Newton iteration algorithm to get our result.  The 
Newton iteration is defined by: 
 

𝑥௡ାଵ = x௡ −
௙(௫೙)

௙ᇱ(௫೙)
         ( 11) 

 
This method can be found the following way by restating the problem of finding Sqrt(y), we 

instead try to find the reciprocal square root of y which is: 
ଵ

√௬
.  Once it has been found we can 

find ඥ𝑦 = 𝑦
ଵ

√௬
.   By just multiplying the result with y.  

Now to find the
ଵ

√௬
.   We use the equation   

ଵ

௫మ
= 𝑦 =>  

ଵ

௫మ
− 𝑦 = 0 .  

Using Newton's formula, we get using f(x)= 
ଵ

௫మ
− 𝑦, f’(x)=

ିଶ

௫య
 

 

𝑥௡ାଵ = x௡ −

1
𝑥௡

ଶ − 𝑦

−2
𝑥௡

ଷ

=> 

 

𝑥௡ାଵ = x௡ +
1

2
𝑥௡

ଷ ൬
1

𝑥௡
ଶ

− 𝑦൰ => 

 

𝑥௡ାଵ =
ଵ

ଶ
x௡(3 − 𝑦𝑥௡

ଶ)    ( 12) 

 
We now have our algorithm for finding the square root without any division. 
 

𝑥௡ାଵ =
ଵ

ଶ
x௡(3 − 𝑦𝑥௡

ଶ)    ( 13) 

𝑊ℎ𝑒𝑟𝑒  𝑥଴ ≈
1

ඥ𝑦
 (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑢𝑒𝑠𝑠) 

𝑎𝑛𝑑 𝑥௡ 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 𝑡𝑜𝑤𝑎𝑟𝑑𝑠 
1

ඥ𝑦
 

Algorithm 3 
 
For the initial guess x0 we simply use the c library sqrt(b) function for the double variable. 
Now for this to work for arbitrary precision we need to use a little trick to ensure that we can 
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call the c library sqrt function with a double argument that fits the range of the IEEE754 
double standard. See the initial guess section below. 
 
Notice the algorithm only requires us to do one subtraction and four multiplications per 
iteration. Well, multiplication by 0.5 can be done by just adjusting the exponent and therefore 
should not count as a ‘real’ multiplication. We end up with one subtraction and three 
multiplication per iteration and then a final multiplication for the calculation of the square 
root. 
Also as for the Newton method, we will have quadratic convergence meaning that for each 
iteration we will double the number of correct digits in our result. 
 
The Initial guess 
As for the initial guess, we can extract the exponent 2௘೛ out of the equation, then multiply the 

result with 2
೐೛

మ    after the iteration (assuming ep is an even integer) and remember our 
exponent is an integer in base two. I1 is the one-digit integer and fn is the n fraction parts 
digits. 
 

ଵ

ௌ௤௥௧(௬)
=

ଵ

ௌ௤௥௧(௜భ.௙೙ଶ೐೛)
=

ଵ

ௌ௤௥௧(௜భ.௙೙)
2ି

೐೛

మ       ( 14) 

 
If ep is odd, we have to use (since the exponent needs to be an integer): 
 

ଵ

ௌ௤௥௧(௬)
=

ଵ

ௌ௤௥௧(௜భ.௙೙ଶ೐೛)
=

ଵ

ௌ௤௥௧(௜భ.௙೙∗ଶ)
2ି

೐೛షభ

మ       ( 15) 

 
This simplifies the initial guess since we know that factoring out the exponent will leave us 
with an arbitrary precision number between [1..2[  (for even exponent) and [1..4[ for odd 
exponent. With the number well within the range of IEEE754, we can find a good initial 

guess of 
ଵ

ௌ௤௥௧(௬)
 using standard IEEE754 arithmetic with approx. 15-16 significant decimal 

digits. 
 
Example of Newton’s method for square root 
To see how this algorithm works let us find the Sqrt of 1.6 using an initial start guess of 
1/1.6=0.625. 
 

Newton 1/sqrt(y)   
Sqrt(y) 1.6   
y= 1.6   
x0= 0.625   

n x Sqrt(y) Error 
1 0.7421875 1.1875 7.74E-02 
2 0.786218643 1.257949829 6.96E-03 
3 0.790533565 1.264853704 5.74E-05 
4 0.790569413 1.26491106 3.90E-09 
5 0.790569415 1.264911064 0.00E+00 

 
After 5 iterations the difference between the iteration and the build in Sqrt() operator is 0 and 
the result of Sqrt(1.6)  is 1.264911064 
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Brent’s improvement 
Brent [7] point out that you can improve the Newton algorithm by iterating using: 
 

𝑥௡ାଵ = 𝑥௡ + 𝑥௡(1 − 𝑦𝑥௡
ଶ)        ( 16) 

Algorithm 4 
 
Which is identical from a mathematical point of view but different from a computational 
point of view. Brent points out that you can perform the multiplication between xn-1 and (1 −
𝑦𝑥௡

ଶ)  in 𝑥௡(1 − 𝑦𝑥௡
ଶ) using only half the precision in the multiplication. You gain one 

addition but do not need the multiplication with full precision.  From a computational point of 
view, you do save some time or gain some performance using this formula for the iteration, 
particularly for a higher number of digits.  
 

Halley’s method for square root 
Halley’s method has a cubic convergence rate compared to Newton's quadratic order. Cubic 
convergence rate means that for every iteration you get 3 times as many correct digits 
compare to the Newton method which only gives you 2 times as many correct digits. Higher 
order convergence results in fewer iterations step at the expense of a more complex 
calculation per iteration. Normally it tends to even out that the time you save in fewer 
iterations steps is lost by a more complex iteration. 
 

Halley square root method is using the following iterations step for finding 
ଵ

√௬
: 

 
𝑧௡ = 𝑦𝑥௡

ଶ  

𝑥௡ାଵ = 𝑥௡
ଵ

଼
(15 − 𝑧௡(10 − 3𝑧௡))    ( 17) 

Algorithm 5 
 
And then we get the final result: 

 
 ඥ𝑦=yxn+1          ( 18) 

 

It can be found using Householders 2nd order method aka. Halley’s method: 
 

𝑥௡ାଵ = 𝑥௡ −
௙(௫೙)

௙ᇲ(௫೙)
−

௙(௫೙)మ௙ᇱᇱ(௫೙)

ଶ௙ᇱ(௫೙)య
       ( 19) 

 

Where 𝑓(𝑥) = 𝑦 −
ଵ

௫మ ,   𝑓ᇱ(𝑥) =
ଶ

௫య ,   𝑓ᇱᇱ(𝑥) = −
଺

௫ర 

 
This yield: 
  

𝑥௡ାଵ = 𝑥௡ −
𝑦 −

1
𝑥௡

ଶ

2
𝑥௡

ଷ

−
൬𝑦 −

1
𝑥௡

ଶ൰
ଶ

(−
6

𝑥௡
ସ)

2 ൬
2

𝑥௡
ଷ൰

ଷ => 

 

𝑥௡ାଵ = 𝑥௡ − 𝑥௡
ଷ

1

2
൬𝑦 −

1

𝑥௡
ଶ

൰ + 𝑥௡
ହ

3

8
(𝑦 −

1

𝑥௡
ଶ

)ଶ => 
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𝑥௡ାଵ = 𝑥௡ − 𝑥௡

1

2
(𝑦𝑥௡

ଶ − 1) + 𝑥௡

3

8
(𝑦𝑥௡

ଶ − 1)ଶ => 

 

𝑆𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒 𝑧௡ = 𝑦𝑥௡
ଶ 𝑦𝑜𝑢 𝑔𝑒𝑡  𝑥௡ାଵ = 𝑥௡ − 𝑥௡

1

2
(𝑧௡ − 1) + 𝑥௡

3

8
(𝑧௡ − 1)ଶ => 

 

 𝑥௡ାଵ = 𝑥௡

1

8
(8 − 4(𝑧௡ − 1) + 3(𝑧௡ − 1)ଶ) => 

 

𝑥௡ାଵ = 𝑥௡

1

8
(15 − 4𝑧௡ + 3(𝑧௡

ଶ + 1 − 2𝑧௡)) => 

 

𝑥௡ାଵ = 𝑥௡

1

8
(15 − 10𝑧௡ + 3𝑧௡

ଶ) => 

 

𝑥௡ାଵ = 𝑥௡
ଵ

଼
(15 − 𝑧௡(10 − 3𝑧௭))    ( 20) 

 
Per iteration, we have five multiplication and two subtraction. Compare to Newton we have 
additional subtraction and two extra multiplication so each iteration will take a little bit 
longer however you will have fewer iterations to perform. (Approx. 2/3).   
 
Example of Halley’s method for square root 

Halley 1/Sqrt(y)     
Sqrt(y) 1.6     
y= 1.6     
x0= 0.625     

n x Sqrt(y) Error 
1 0.775146 1.240234375 2.47E-02 
2 0.790555 1.264887927 2.31E-05 
3 0.790569 1.264911064 1.93E-14 
4 0.790569 1.264911064 0.00E+00 

  
As expected, we get a faster iteration and reach the result after only four iterations. 
 
Which method for the square root? 
Both Newton (second order) and the Halley (third order method) have advantages and 
disadvantages. If you begin to measure the performance, you will notice that sometimes the 
Newton method is faster, and sometimes the Halley method is faster. It all boils down to how 
many iterations you need. Now the third-order Halley method requires 1.58 iterations less 
than a second-order Newton method.  However, you cannot do a fraction of iterations since it 
has to be an integral number. We have chosen a hybrid implementation where we pre-
calculate the number of iterations for each method and then round it up to the nearest higher 
integer number. Divide the number of Newton iterations by the number of Halley iterations. 
If the division is > 1.58 then we choose Halley iterations. If less or equal (<=1.58) we choose 
the Newton method.   
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N’th root  
Now that we have found a better way of doing the square root we also need to consider if we 
can use a similar technic when dealing with the √𝑥

೙ . By default, we resort to the power 
function which evaluates to: 
 

  √𝑥
೙

= 𝑥
భ

೙ = 𝑒
భ

೙
∗௟௢௚೐(௫)         ( 21) 

 
Which use two very expensive and time-consuming functions exp(x) and log(x).  Instead, we 
can create a faster way to calculate √𝑥

೙ . Using the same principle as the sqrt(). The result is a 
huge speed-up improvement. 
 
As can be seen below the speed of the nroot() is more or less constant regardless of the nth 
root and it is several magnitudes better than the traditional calculation via the pow() function. 
 
Let us end the discussion of the sqrt() and nroot() by devising the Newton formula for the 
nroot. It is quite similar to the way we got the algorithm for the sqrt() function. We are trying 

to find a function to the solution 𝑥 = √𝑆
೙

=>  𝑥௡ = 𝑆 =>  
ଵ

௫೙
=

ଵ

ௌ
 

 

Letting 𝑦 =
ଵ

ௌ
 you get: 𝑓(𝑥) =

ଵ

௫೙
− 𝑦 = 0 𝑎𝑛𝑑 𝑓ᇱ(𝑥) = −𝑛𝑥ି௡ିଵ 

 
Using the Newton method, you get: 
 

𝑥௜ାଵ = 𝑥௜ −
𝑥௜

ି௡ − 𝑦

−𝑛𝑥௜
ି௡ିଵ => 

 

𝑥௜ାଵ = 𝑥௜ +
1

𝑛
(𝑥௜ − 𝑥௜

௡ାଵ𝑦) => 

 
 

𝑥௜ାଵ = 𝑥௜ +
1

𝑛
𝑥௜(1 − 𝑥௜

௡𝑦) => 

 

𝑥௜ାଵ = 𝑥௜
ଵ

௡
(𝑛 + 1 − 𝑥௜

௡𝑦)     ( 22) 

 
And now: 
 

 √𝑆
೙

=
ଵ

௫೔శభ
          ( 23) 

 

We still have a division 
ଵ

௡
 but it is with the constant n so we can calculate it once before the 

start of the iteration avoiding any division while iterating. 
 
We could have done a more direct approach as we saw for the square root: 
 

𝑥 = √𝑆
೙

=>  𝑥௡ = 𝑆 => 𝑥௡ − 𝑆 = 0      ( 24) 
 
You get  𝑓(𝑥) = 𝑥௡ − 𝑆 = 0 𝑎𝑛𝑑 𝑓ᇱ(𝑥) = 𝑛𝑥௡ିଵ 
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Using the Newton method, you get: 
 

𝑥௜ାଵ = 𝑥௜ −
𝑥௜

௡ − 𝑆

𝑛𝑥௜
௡ିଵ => 

 

𝑥௜ାଵ = 𝑥௜ −
1

𝑛
(𝑥௜ −

𝑆

𝑥௜
௡ିଵ) => 

 
 

𝑥௜ାଵ =
ଵ

௡
((𝑛 − 1)𝑥௜ +

ௌ

௫೔
೙షభ)     ( 25) 

 
We end up with an extra division that we need to calculate per iteration and therefore it will 
be slower than the first version as we saw when calculating the square root. 
 
There exist other higher-order methods like the Halley but that will be slower than the 
Newton version. In the Booth Arbitrary precision library, they did some testing and the 
Newton method came out ahead of all other methods. See [20] 
 
As for the nrooth algorithm, it can also benefit from using dynamic precision as outlined in 
[8] for both the inverse and sqrt root functions 
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Elementary functions: 
 
For all elementary functions regardless of whether it is logarithmic, exponential, 
trigonometric, or hyperbolic functions, we use either a Taylor series or some iteration method 
like the Newton's to find our results. 
 
For all these methods, we do the same. Before we apply the Taylor series or Newton 
iterations, we first reduced the argument to improve the efficiency of our methods or reduce 
the problem to a domain where it is faster to evaluate the function. We reduced the argument 
x to x1 and then evaluate the function using x1 at f(x1) and then finally restore the original f(x) 
using the result of f(x1).  
 
We also rely on another trick to increase performance by using coefficient scaling of a group 
of Taylor terms to reduce the need to perform division for every Taylor term. 
 
For argument reduction, we either use Additive/Subtractive argument reduction where x1=x-k 
for some value of k.  This is particularly useful for function with a periodic nature like Sine 
and Cosine functions that has a period of 2π. 
Another way is to use a Multiplicative argument reduction where x1=x/k. e.g. the Exponential 
double formulae: 2)exp()2exp( xx  where k=2. Here the original argument is reduced by a 
factor of two but then we have to square the result after our calculation to restore the original 
calculation. Needless to say that you can repeatedly apply the reduction formulae to your 
original problem 
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 Exponential functions  
 
There are a couple of ways you can calculate exp(x) in arbitrary precision.  Traditional a 
Taylor series expansion has been used but some have suggested the use of the sinh() function 
to calculate the exp(). This chapter will examine: 
 

1) Exp(x) using Taylor series. 
2) Exp(x) using Sine Hyperbolic function. 
3) Exp(x) using the Binary Splitting method 

 
The most common one for arbitrary precision libraries is the standard Taylor series expansion 
method. For other methods and more details, see [9]. 
 
ex using the Taylor series 
For the function, exp(x) we can use the corresponding Taylor series for exp(x) as defined by: 
 

exp(𝑥) = 1 +
௫

ଵ!
+

௫మ

ଶ!
+

௫య

ଷ!
+

௫ర

ସ!
+

௫ఱ

ହ!
+ ⋯      ( 26) 

 

We eliminate x< 0 by using the identity: 𝑒ି௫ =
ଵ

௘ೣ   meaning we first calculate ex and then do 

the inverse of  
ଵ

௘ೣ
. 

 
Unfortunately, this series does not converge very fast and will require many Taylor terms to 
complete. 
 
Example 1 of Taylor series for ex 
Using x=1 we get after 17 Taylor series the result of exp(1)= 2.718281828459 
 

Exp(x)  Original X Reduced  
x=  1 1  
Argument reductions= 0   

Terms Term value Term Sum Exp(x) Error 
1 1.00E+00 1.000000000000 1.000000000000 1.72E+00 
2 1.00E+00 2.000000000000 2.000000000000 7.18E-01 
3 5.00E-01 2.500000000000 2.500000000000 2.18E-01 
4 1.67E-01 2.666666666667 2.666666666667 5.16E-02 
5 4.17E-02 2.708333333333 2.708333333333 9.95E-03 
6 8.33E-03 2.716666666667 2.716666666667 1.62E-03 
7 1.39E-03 2.718055555556 2.718055555556 2.26E-04 
8 1.98E-04 2.718253968254 2.718253968254 2.79E-05 
9 2.48E-05 2.718278769841 2.718278769841 3.06E-06 

10 2.76E-06 2.718281525573 2.718281525573 3.03E-07 
11 2.76E-07 2.718281801146 2.718281801146 2.73E-08 
12 2.51E-08 2.718281826198 2.718281826198 2.26E-09 
13 2.09E-09 2.718281828286 2.718281828286 1.73E-10 
14 1.61E-10 2.718281828447 2.718281828447 1.23E-11 
15 1.15E-11 2.718281828458 2.718281828458 8.15E-13 
16 7.65E-13 2.718281828459 2.718281828459 5.02E-14 
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17 4.78E-14 2.718281828459 2.718281828459 0.00E+00 
 
That is not too bad, however, if we change the argument to 10 then we need 45 Taylor's terms 
to get the result and if we use x=0.1 then we only need 10 Taylor terms.  
This lead to the observation that the number of Taylor's terms needed depends heavily on the 
argument to exp(x). 
 
Argument Reduction for ex 
We prefer to have our x < 1 to ensure that the Taylor series converges more quickly. We can 
accomplish that using a technique called argument reduction to work with a smaller number 
to get a faster converging to ex using fewer terms of the Taylor series.  

We can use the identity:𝑒௫ = (𝑒
ೣ

మ)ଶ to reduce the argument with a factor of two and then after 
the Taylor iterations we can square the result to find the correct value of ex. 
Or more generally we can reduce the argument x for some k where: 
 

𝑒௫ = (𝑒
ೣ

మೖ)ଶೖ
          ( 27) 

 
Iterate through the Taylor terms of the reduced argument 

௫

ଶೖ
  and then Square the result k 

times after the Taylor iterations. This makes sense since for each Taylor term you need to 
divide with the factorial and that is many times more time-consuming than squaring the result 
k times after the Taylor iterations. 
 
Example 2: Taylor series for ex using argument reduction 
If using the previous example 1 and reducing the argument twice from one to 0.25 we only 
need 12 Taylor terms to get the same result as before, saving five Taylor terms but gaining 
two squaring at the end. However, overall huge savings since we have avoided five time-
consuming divisions in Taylor's terms. 
 

Exp(x)  Original X Reduced  
x=  1 0.25  
Argument reductions= 2   

Terms Term value Term Sum Exp(x) Error 
1 1.00E+00 1.000000000000 1.000000000000 2.84E-01 
2 2.50E-01 1.250000000000 2.441406250000 3.40E-02 
3 3.13E-02 1.281250000000 2.694855690002 2.78E-03 
4 2.60E-03 1.283854166667 2.716831973351 1.71E-04 
5 1.63E-04 1.284016927083 2.718209939201 8.49E-06 
6 8.14E-06 1.284025065104 2.718278851251 3.52E-07 
7 3.39E-07 1.284025404188 2.718281722614 1.25E-08 
8 1.21E-08 1.284025416299 2.718281825163 3.89E-10 
9 3.78E-10 1.284025416677 2.718281828368 1.08E-11 

10 1.05E-11 1.284025416687 2.718281828457 2.69E-13 
11 2.63E-13 1.284025416688 2.718281828459 5.77E-15 
12 5.97E-15 1.284025416688 2.718281828459 0.00E+00 

 
If we use an eight-times reduction we get the same results after just six Taylors terms. 
 

Exp(x)  Original X Reduced  
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x=  1 0.00390625  
Argument reductions= 8   

Terms Term value Term Sum Exp(x) Error 
1 1.00E+00 1.000000000000 1.000000000000 3.91E-03 
2 3.91E-03 1.003906250000 2.712991624253 7.64E-06 
3 7.63E-06 1.003913879395 2.718274935741 9.94E-09 
4 9.93E-09 1.003913889329 2.718281821729 9.71E-12 
5 9.70E-12 1.003913889338 2.718281828454 7.33E-15 
6 7.58E-15 1.003913889338 2.718281828459 0.00E+00 

 
These examples demonstrate the efficiency of using argument reduction. 
 
The issue with arbitrary precision for ex 
17 Taylor's terms to reach a result do not seem so bad at a first glance. However, when we are 
dealing with higher precisions e.g. 1,000 digits, 10,000, or even 100,000 digits we suddenly 
have to perform a lot more Taylor terms to find our result. In Yacas book of algorithms [6] 
they found a bound for the number of Taylor terms n needed as a function of the number of 
precision in digits P assuming |x|< 1: 
 

𝑛 =
௉∙୪୬ (ଵ଴)

୪୬ (௉)
− 1         ( 28) 

 
For P = 1,000 digits you get n=332 Taylor terms are needed. For 10,000 digits, n=2,499, and 
100,000 digits you get a whopping n=19,999 Taylor terms and 1M digits, n=166,666 terms. 
With that amount of Taylor terms, it will take a long time to evaluate exp(x) for high numbers 
of digits, see table below. 
 
Digits 101 102 103 104 105 106 107 108 109 
Taylor 
terms 

9 49 332 2,499 19,999 166,666 1.43M 12.5M 111M 

 
Now to see the effect of argument reduction on improving the Taylor series we have recorded 
the amount of Taylor terms needed for various argument reductions from 1 to 128 on a 
random floating-point number between 1.xxx and 9.xxx. From the table, we see that the 
reduction in the number of Taylor terms varies more than 10-fold between 1 as the reduction 
factors to a reduction factor of 2128 
The Auto reduction is the number of Taylor terms when we automatically find a reasonable 
reduction factor. Most of the time it varies between 32 to 64 reductions. 
 
Digits              10             100          1,000           10,000         1,000,000  
Auto Red.                5               12               75                516                4,393  
1 Pred.              17               96             435             3,861              25,197  
2 Red.              15               81             393             3,510              23,580  
4 Red.              11               60             327             2,962              20,877  
8 Red.                8               40             243             2,244              16,941  
16 Red.                5               24             159             1,497              12,241  
32 Red.                4               13               94                889                7,820  
64 Red.                3                 8               52                487                4,510  
128 Red.                3                 5               28                255                2,430  
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The total number of operations going from one Taylor term to the next is: 
 

௫೙

௡!
→

௫∙௫೙

(௡ାଵ)∙௡!
          ( 29) 

 
Is two multiplication and one division. The n+1 can be handled using the native C++ types 
and does not count for the workload for arbitrary precision.  
 
Now doing k reduction will require k multiplication before the Taylor iterations start and k 
multiplication at the back-end or 2k multiplication. The front operation multiplication for a 
normalized arbitrary precision number is not performed as a real multiplication (of 0.5) but 
handle by just subtracting one from the exponent (which is the same as dividing by two or 
multiply by 0.5). This does not amount to anything that counts towards the workload and can 
be ignored. On the back-end, it will still require k multiplication. As an example, we can 
calculate the total workload for a 10,000 digits number using one reduction versus two 
reductions. 
 
1-reduction workload = 3,861*(2*multiplication+1 
division)+1*multiplication=7,723*multiplication and 3,86*1division. 
 
16-reduction workload: 1,497*(2*multiplication+1*division)+2*multiplication= 
2996*multiplication and 1,497 division 
 
Assuming division is 10 times slower than multiplication, you get a total workload of 
multiplication equivalence of 7,723+10*3,861=46,333 for 1 reduction and 17,966 or 40% 
reduction in workload. 
 
Finding a reasonable reductions factor for ex 
As can be seen in the above table a higher reduction factor greatly improved the performance. 
However, how many times reduction is adequate? Yacas book [6] states that at least x should 
be lower to |x|<10-M and M should be: 
 

  |𝑥| < 10ିெ 𝑎𝑛𝑑 𝑀 >
୪୬ (௉)

୪୬ (ଵ଴)
        ( 30) 

 
Where P is the precision in decimal digits. 
 
Measuring the performance indicates that this is not the most optimal selection. Therefore, 
we multiply the M found above with a constant eight to get a more reasonable reduction 
factor and then adjust for the magnitude of |x| itself.  
 
The adjustment for the magnitude of |x| is simply the number exponent (power of 2 exponent) 
to ensure that the number will be well below one. This works well for small magnitude |x| 
and for high magnitude |x|. By just adding the exponent (positive or negative) to the reduction 
factor. 
 
The performance table below shows the effect of using increasingly higher reduction factors. 
 
All measures are in milliseconds 
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Digits 10 100 1,000 10,000 1,000,000 
Auto Red. 0.11 0.53 17 5,596 291,871 

1 Pred. 0.24 2.50 59 39,812 1,810,970 
2 Red. 0.20 2.00 67 38,736 1,286,680 
4 Red. 0.13 1.57 50 32,372 1,104,910 
8 Red. 0.09 1.11 57 24,334 898,426 

16 Red. 0.08 0.71 34 16,026 652,547 
32 Red. 0.10 0.53 22 9,425 413,501 
64 Red. 0.24 0.71 15 5,309 241,661 
128 Red. 0.59 0.59 17 3,330 131,452 

 
As you can see for higher precision, you will benefit even more from increasing the reduction 
factor.  
 
Brent enhancement 
To avoid loss of precision we do not do a repeated number of squaring at the back end. 
Instead of just squaring for every number of reductions performed. 
 

𝑒௫ = (𝑒
ೣ

మ)ଶ          ( 31) 
 
We use the identity as suggested by Brent [6]: 
 

𝑒௫ − 1 = ቀ𝑒
௫
ଶ − 1ቁ ቀ𝑒

௫
ଶ + 1ቁ => 

𝑒௫ − 1 = 2 ቀ𝑒
ೣ

మ − 1ቁ + ቀ𝑒
ೣ

మ − 1ቁ
ଶ

    ( 32) 

 
 
Guard Digits for ex 
 
When summarizing a Taylor series as exp(x) you need quite a lot of summarizing and that 
will produce round-off errors. In Yacas [6] they estimate the round-off to be approx. per term 
involving one multiplication, one division, and one addition to be: 
 

𝑑𝑖𝑔𝑖𝑡𝑠 𝑙𝑜𝑠𝑡 =
ଷ ୪୬(௡)

୪୬(ଵ଴)
 𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑎𝑦𝑙𝑜𝑟 𝑡𝑒𝑟𝑚𝑠   ( 33) 

. 
Lost digits as a function of Taylor terms 
Taylor Terms 10 100 1,000 10,000 1,000,000 
Lost digits. 3 6 9 12 15 

 
Lost digits adjusted for actual Taylor’s terms versus reduction factor 
Digits 10 100 1,000 10,000 1,000,000 
Auto Red. 2.1 3.2 5.6 8.1 10.9 
1 Pred. 3.7 5.9 7.9 10.8 13.2 
2 Red. 3.5 5.7 7.8 10.6 13.1 
4 Red. 3.1 5.3 7.5 10.4 13.0 
8 Red. 2.7 4.8 7.2 10.1 12.7 
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16 Red. 2.1 4.1 6.6 9.5 12.3 
32 Red. 1.8 3.3 5.9 8.8 11.7 
64 Red. 1.4 2.7 5.1 8.1 11.0 
128 Red. 1.4 2.1 4.3 7.2 10.2 

 
As can be seen the maximum different only account for 3-4 digits between no reduction and a 
high reduction factor where a higher reduction factor means less loss of digits. 
 
For our ex function, we use a simple guard digits calculation that we add  
 

 2+ceil(log10(digits)) as extra guard digits. 
 
Further Improvement of the Taylor series for ex? 
There is not a lot of things you can do to improve the exp(x) algorithm. However, consider 
the Taylor series expansion of exp(x): 
 
 

exp(𝑥) = 1 +
௫

ଵ!
+

௫మ

ଶ!
+

௫య

ଷ!
+

௫ర

ସ!
+

௫ఱ

ହ!
+ ⋯      ( 34) 

 
The issue is the division for each term. Since division is many times slower than calculation 
and addition. You could group two or more Taylor terms (sometimes referred to as 
coefficient scaling) and reduce the number of divisions. Consider the n’th and the n+1 term: 
  

…
𝑥௡

𝑛!
+

𝑥௡ାଵ

(𝑛 + 1)!
… 

Moreover, group them: 
 

…
(𝑛 + 1)𝑥௡

(𝑛 + 1)𝑛!
+

𝑥௡ାଵ

(𝑛 + 1)!
… => 

 

…
(𝑛 + 1)𝑥௡ + 𝑥௡ାଵ

(𝑛 + 1)!
… 

 
Then you have replaced one division with an extra multiplication. The (n+1) can be done 
using a 32-bit or 64-bit integer since you never get to do that many Taylor terms in real life. 
There is no need to stop at just grouping two terms together you can do that for three terms: 
 

…
(𝑛 + 1)(𝑛 + 2)𝑥௡ + (𝑛 + 2)𝑥௡ାଵ + 𝑥௡ାଶ

(𝑛 + 2)!
… => 

 
 

…
𝑥௡(𝑥ଶ + (𝑛 + 2)𝑥 + 𝑛ଶ + 3𝑛 + 2)

(𝑛 + 2)!
… 

 
Saving two divisions, however, gaining a few more addition and multiplications. 
 
In general, you can add a g group together: 
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∑ (∏ (௡ା௜))௫೙శ೔షభ೒

೔సభ
೙శ೒
೙

(௡ା௚)!
        ( 35) 

 
Because arbitrary precision division is, much more time-consuming to calculate it will be 
highly advantages to implement this grouping of Taylor terms. With four to five terms 
grouped, you get a speed up of 2-3 times compare to not grouping terms together. 
 
ex using Sine Hyperbolic function 
Less use but the fastest way to calculate exp(x) is using the Sine Hyperbolic function using 
the identity: 
 

exp(𝑥) = sinh(𝑥) + ඥ1 + sinh (𝑥)ଶ       ( 36) 
 
Where the sinh(x) can be found with the Taylor series (see later section of Hyperbolic 
functions): 
 

sinh(𝑥) = 𝑥 +
௫య

ଷ!
+

௫ఱ

ହ!
+

௫ళ

଻!
+

௫వ

ଽ!
…       ( 37) 

 
The sinh(x) Taylor series looks familiar to the Taylor series for exp(x) (every second term is 
removed): 
 

exp(𝑥) = 1 +
௫

ଵ!
+

௫మ

ଶ!
+

௫య

ଷ!
+

௫ర

ସ!
+

௫ఱ

ହ!
+ ⋯      ( 38) 

 
Except that, for each term, we go faster towards zero with the sinh(x) and we should expect 
that we would need fewer Taylor terms for a given precision compare to the exp(x) Taylor 
series. 
 
Example: ex using Sinh 
Using no argument reduction. We need 9 Taylor terms to get the result compared to 17 for 
exp(x) using the Taylor series. 
  
Exp(x) 

 
Original X Reduced 

 

x= 
 

1 1 
 

Argument reductions= 0 
  

Terms Term value Term Sum Exp(x) Error 
1 1.00E+00 1.00000000000 2.4142135624 3.04E-01 
2 1.67E-01 1.16666666667 2.7032574095 1.50E-02 
3 8.33E-03 1.17500000000 2.7179274124 3.54E-04 
4 1.98E-04 1.17519841270 2.7182769296 4.90E-06 
5 2.76E-06 1.17520116843 2.7182817840 4.44E-08 
6 2.51E-08 1.17520119348 2.7182818282 2.84E-10 
7 1.61E-10 1.17520119364 2.7182818285 1.35E-12 
8 7.65E-13 1.17520119364 2.7182818285 4.88E-15 
9 2.81E-15 1.17520119364 2.7182818285 0.00E+00 
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Argument Reduction in ex using Sine Hyperbolic 
As for the regular Taylor, series for exp(x), it is clear that we prefer to have our |x| < 1 to 
ensure that the Taylor series converge more quickly. We again use argument reduction to 
work with a smaller number to get a faster converging to ex using fewer terms of the Taylor 
series.  
 
We can use the trisection identity: sinh(3𝑥) = Sinh(x)(3 + 4Sinh(x)ଶ) to reduce the 
argument with a factor of three and then after the Taylor iterations we restore and find the 
correct value for sinh(x) by applying this formula the same number of times we did when 
reducing the argument. 
 
Example: ex using Sine Hyperbolic with argument reduction 
With two reductions, you get the result after only five Taylor terms compare to 12  
Exp(x) 

 
Original X Reduced 

 

x= 
 

1 0.111111111 
 

Taylor reductions= 2 
  

Terms Term value Term Sum Exp(x) Error 
1 1.11E-01 0.11111111111 2.7127251898 5.56E-03 
2 2.29E-04 0.11133973480 2.7182783961 3.43E-06 
3 1.41E-07 0.11133987592 2.7182818275 1.01E-09 
4 4.15E-11 0.11133987596 2.7182818285 1.73E-13 
5 7.11E-15 0.11133987596 2.7182818285 0.00E+00 

 
With 8 times reduction you get the result after two 2 Taylor terms compare to 6 using 
standard exp(x) Taylor series. 
Exp(x) 

 
Original X Reduced 

 

x= 
 

1 0.000152416 
 

Taylor reductions= 8 
  

Terms Term value Term Sum Exp(x) Error 
1 1.52E-04 0.00015241579 2.7182818179 1.05E-08 
2 5.90E-13 0.00015241579 2.7182818285 0.00E+00 

 
Granted it is not fair to compare it this way since the standard exp(x) argument reduction is 
the only factor of two per reduction compare to a factor of three using the sinh(x) trisection 
identity. 
 
Further Improvement of ex using Sine Hyperbolic? 
The same technique for coefficient scaling (grouping of Taylor terms) can be applied here as 
well. Consider the Taylor series for sine hyperbolic: 
 

sinh(𝑥) = 𝑥 +
௫య

ଷ!
+

௫ఱ

ହ!
+

௫ళ

଻!
+

௫వ

ଽ!
…       ( 39) 

 
The issue again clearly is the division for each term. Since division is many times slower than 
calculation and addition. You could group two or more Taylor terms (sometimes referred to 
as coefficient scaling) and reduce the number of divisions. Consider the n’th and the n+1 
term: 
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…
𝑥௡

𝑛!
+

𝑥௡ାଶ

(𝑛 + 2)!
… 

Moreover, group them: 
 

…
(𝑛 + 1)(𝑛 + 2)𝑥௡

(𝑛 + 1)(𝑛 + 2)𝑛!
+

𝑥௡ାଶ

(𝑛 + 2)!
… => 

 

…
(𝑛 + 1)(𝑛 + 2)𝑥௡ + 𝑥௡ାଶ

(𝑛 + 2)!
… 

 
Then you have replaced one division with two extra multiplication. The (n+1)(n+2) can be 
done using 64-bit integer arithmetic since you never get to do some many Taylor terms in real 
life that it will overflow. There is no need to stop at just grouping two terms together you can 
do that for three terms or more terms: 
 
For grouping three Taylor terms, you get: 
 

…
(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)𝑥௡ + (𝑛 + 3)(𝑛 + 4)𝑥௡ାଶ + 𝑥௡ାସ

(𝑛 + 4)!
… => 

 

…
(𝑛 + 3)(𝑛 + 4)( (𝑛 + 1)(𝑛 + 2)𝑥௡ + 𝑥௡ାଶ) + 𝑥௡ାସ

(𝑛 + 4)!
… 

 
 
ex using the binary splitting method 
This method expands on the same method for calculating e, see the section on constants. 
 
It used the Taylor series for exp(x): 
 

exp(𝑥) = 1 +
௫

ଵ!
+

௫మ

ଶ!
+

௫య

ଷ!
+

௫ర

ସ!
+

௫ఱ

ହ!
+ ⋯     ( 40) 

 
However, instead of calculating the series as above we implement it using the binary splitting 
method. 
The binary splitting methods (see [12]) equate the Taylor series terms with two variables p 
and q and then it is just a matter of dividing p with q to get the approximation for e. 
 

𝑒 = ∑
ଵ

௞!
= 1 +

௫

ଵ
+

௫మ

ଶ
+

௫య

଺
+

௫ర

ଶସ
+ ⋯ஶ

௞ୀ଴ =
௉(଴,௞)

ொ(଴,௞)
    ( 41) 

 
Here Q(0,k) is an integer, but P(0,k) is a float_precision variable. (Since x can be any real 
value). The notation P(0,k)/Q(0,k) represents the first k terms of the above series. For any 
given value of a & b, we can compute P(a,b) and Q(a,b) as follows using the binary splitting 
method. (a and b are integers and a<b) following the recursion: 
 
Algorithm: Binary splitting method for e 

  𝑚 =
௔ା௕

ଶ
 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 

  P(a,b)=P(a,m)Q(m,b)+P(m,b) 
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  Q(a,b)=Q(a,m)Q(m,b) 
  And P(b-1,b)=xb;  Q(b-1,b)=b; 
Algorithm 6 
 
You continue this recursive breakdown until a+1=b and you set P(a,b)=xb and Q(a,b)=b and 
let the formula reverse bottom up. 
 
Argument reduction for ex for the binary splitting method 
Now to make the algorithm efficient we need to ensure that |x| <1. That can be done easily by 
just using argument reduction as previously describe under exp(x) using the Taylor series. 
We expect that if |x| << 1 then the Taylor series will converge faster.  
 
To calculate how many Taylor terms we need as a function of required decimal digits of e. 
We resort to the Stirling approximation formula for !. We notice that to get P decimal 
precision of ex and the number of Taylor terms is k we need it to satisfy the equation that:  
 

௫ೖ

௞!
< 10ି௉          ( 42) 

 
Where we use the Stirling approximation for k!: 
 

𝑘! ≈ ቀ
௞

௘
ቁ

௞

√2𝜋𝑘 , 𝑆𝑡𝑖𝑟𝑙𝑖𝑛𝑔 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛      ( 43) 

 
This yield: 

௫ೖ

ቀ
ೖ

೐
ቁ

ೖ

√ଶగ௞

< 10ି௉         ( 44) 

 
Taking log() on both sides you get:  
 

−𝑘 ∙ log(𝑥) + 𝑘 ∙ (log(𝑘) − 1) +
ଵ

ଶ
log(2𝜋𝑘) > 𝑃 ∙ 𝑙𝑜𝑔(10)   ( 45) 

 
To solve this for k, we can use Newton's methods that find a solution within a few iterations. 
Notice we only need to find the next higher integral number for k. 
 
Taylor terms needed as a function of x 
Digits 10 100 1,000 10,000 100,000 1,000,000 
x       
1 14 70 450 3,249 25,206 205,022 
10-1 7 45 325 2,521 20,502 172,350 
10-2 5 33 252 2,050 17,235 148,429 
10-3 4 25 205 1,724 14,843 130,202 
10-4 3 21 173 1,484 13,020 115.878 
10-5 2 18 149 1,302 11,588 104,339 
10-6 2 15 130 1,159 10,434 94,852 
10-7 2 13 116 1,044 9,485 86,920 
10-8 2 12 105 949 8,692 80,194 
10-9 2 11 95 869 8,020 74,419 
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The above table clearly shows the effect of using the argument reduction technic in the binary 
splitting method. We can apply the same argument reduction formula already established at 
the start of the explanation of ex.  
 
Finding a reasonable reductions factor for ex 
As can be seen in the above table a higher reduction factor greatly improved the performance. 
However, how many times reduction is adequate? Yacas book [6] states that at least x should 
be lower to |x|<10-M and M should be: 
 

  |𝑥| < 10ିெ 𝑎𝑛𝑑 𝑀 >
୪୬ (௉)

୪୬ (ଵ଴)
        

 ( 46) 
 
Where P is the precision in decimal digits. 
 
Measuring the performance indicates that this is not the most optimal selection. Therefore, 
we multiply the M found above with a constant eight to get a more reasonable reduction 
factor and then adjust for the magnitude of |x| itself.  
 
The adjustment for the magnitude of |x| is simply the number exponent (power of 2 exponent) 
to ensure that the number will be well below one. This works well for small magnitude |x| 
and for high magnitude |x|. By just adding the exponent (positive or negative) to the reduction 
factor. 
 
The precision needed, to avoid loss of accuracy. 
Looking at the algorithm we can see for P(a,b): 
 

P(a,b)=P(a,m)Q(m,b)+P(m,b)        ( 47) 
 
We multiply each P(a,m) with Q(m,b) where Q is the factorial. This will create a pretty big 
number as we increase the number of terms we need. To see how big we can again use the 
Stirling approximation for !. 
 

𝑘! ≈ ቀ
௞

௘
ቁ

௞

√2𝜋𝑘 , 𝑆𝑡𝑖𝑟𝑙𝑖𝑛𝑔 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛      ( 48) 

 
Using log10(k!)  We find the number of decimal digits as the size of k! 
 

log 10(𝑘!) ≈ 𝑙𝑜𝑔10(൬
𝑘

𝑒
൰

௞

√2𝜋𝑘 ) => 

 

k ∙ 𝑙𝑜𝑔10(𝑘) − 𝑘 +
ଵ

ଶ
𝑙𝑜𝑔10(2𝜋𝑘) ≈ k ∙ 𝑙𝑜𝑔10(𝑘) − 𝑘, 𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝑘  ( 49) 

 
Digits 10 100 1,000 10,000 100,000 1,000,000 
Size of k! in decimal digits 9 100 2,000 30,000 400,000 5,000,000 

Table of the decimal size of various values for !. 
 
As expected, !. Is a powerful factor where we need to adjust upward the needed accuracy or 
precision when we calculate ex at some precision. The adjustment amount is much larger 
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than we are used to dealing with using regular methods for ex. However, if we use argument 
reduction it counteracts the need to handle calculation with a significantly higher number of 
digits. 
 
Which method to use for ex? 
By measuring the performance, we get clear advantages of using the sine hyperbolic function 
to calculate ex, particularly with an increasing number of digits. The use of the Binary 
splitting method is interesting but lacks the performance of the two other methods. 
 

 
Time in milliseconds between the three methods for evaluating ex  
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Logarithmic functions: 
 
There are quite a few ways you can calculate log(x) in arbitrary precision.  Traditional Taylor 
series expansion has been used however, another method involving AGM (Arithmetic-
Geometric Mean) has shown to be an efficient method of calculating log(x): This chapter will 
examine this. 
 

1. Log(x) using Taylor series, argument reduction, and coefficient scaling. 
2. Using Newton 2nd order method to calculate log(x) 
3. Using Halley 3rd order method to calculate log(x) 
4. Using AGM algorithm to calculate log(x) 

   
The most common one for arbitrary precision libraries is the standard Taylor series expansion 
method but as will be shown this is not the preferred choice if you want performance. When 
we say log(x) with mean the natural logarithm is denoted as ln(x). For other bases, we will 
explicitly refer them to log10(x) or log2(x) to avoid any confusion. 
 
Log(x) using the Taylor series 
For the function, log(x) or the natural logarithm ln(x) we could use the corresponding Taylor 
series for ln(x) as defined by: 
 

ln(𝑥) = (𝑥 − 1) −
(௫ିଵ)మ

ଶ
+

(௫ିଵ)య

ଷ
−

(௫ିଵ)ర

ସ
+ ⋯     ( 50) 

 
Which is valid for 0<x≤2.  The limit range is usually not a problem since we can use 
argument reduction to get x within the limit. The series however converge slowly to ln(x) and 
is not suitable for arbitrary precision. Instead, most implementations use the inverse 
hyperbolic tangent function: 
 

ln(x) = 2 ∙ artanh ቀ
௫ିଵ

௫ାଵ
ቁ = 2(

௫ିଵ

௫ାଵ
+

ଵ

ଷ
(

௫ିଵ

௫ାଵ
)ଷ +

ଵ

ହ
(

௫ିଵ

௫ାଵ
)ହ + ⋯ )   ( 51) 

 
Which is valid for any real number x>0. 
 
These series converge with reasonable speed if x is small. 
 
Example 1. Ln(x) using Taylor series 
Using x=2 we get after 15 Taylor series the result of ln(2)= 0.693147180559945 
 

Ln(x)  Original X Reduced  
x=  2 2  
Taylor reductions= 0   

Terms z Term Sum Ln(x) Error 
1 3.3333E-01 0.333333333333333 0.666666666666667 2.65E-02 
2 3.7037E-02 0.345679012345679 0.691358024691358 1.79E-03 
3 4.1152E-03 0.346502057613169 0.693004115226337 1.43E-04 
4 4.5725E-04 0.346567378666144 0.693134757332288 1.24E-05 
5 5.0805E-05 0.346573023695414 0.693146047390827 1.13E-06 
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6 5.6450E-06 0.346573536879893 0.693147073759785 1.07E-07 
7 6.2723E-07 0.346573585128006 0.693147170256012 1.03E-08 
8 6.9692E-08 0.346573589774121 0.693147179548241 1.01E-09 
9 7.7435E-09 0.346573590229622 0.693147180459244 1.01E-10 

10 8.6039E-10 0.346573590274906 0.693147180549812 1.01E-11 
11 9.5599E-11 0.346573590279458 0.693147180558916 1.03E-12 
12 1.0622E-11 0.346573590279920 0.693147180559840 1.05E-13 
13 1.1802E-12 0.346573590279967 0.693147180559934 1.10E-14 
14 1.3114E-13 0.346573590279972 0.693147180559944 1.33E-15 
15 1.4571E-14 0.346573590279972 0.693147180559945 0.00E+00 

 
That is not too bad, however, if we change the argument to 10 then we need 75 Taylor's terms 
to get the result and if we use x=0.1 then we also need 75 Taylor terms. With x=1.1 you only 
need six Taylor Terms. 
This lead to the observation that the number of Taylor's terms needed depends heavily on the 
argument to ln(x) and how close it is to one. 
 
Argument Reduction 
We prefer to have our x in a small neighborhood around one to ensure that the Taylor series 
converges more quickly. We can accomplish that using a technique called argument 
reduction to work with a smaller number to get a faster converging to ln(x) using fewer terms 
of the Taylor series.  
We can use the identity: 
 

ln(𝑥) = ln ቀ൫√𝑥൯
ଶ

ቁ = 2 ∙ ln (√𝑥)       ( 52) 

 
to reduce the argument by repeating take the square root of x until it gets closer to 1. If we 

take k square roots, reducing  𝑥 => 𝑥
భ

మೖ  and gets closer to one we can then after the Taylor 
iterations multiply the result with 2k to find the correct value of ln(x). 
 
This makes sense to reduce the need for Taylor terms since each Taylor terms involve a 
division, which is very time-consuming in arbitrary precision arithmetic.  
 
Example 2: ln(x) using Taylor series with argument reduction 
If using the previous example 1 and reducing the argument twice from two to 1.1892… we 
only need 7 Taylor terms to get the same result as before, saving eight Taylor terms but 
gaining two squaring and multiplication of 22 =4 at the end. However, overall huge savings 
since we have avoided eight time-consuming divisions in Taylor's terms. 
 

Ln(x)  Original X Reduced  
x=  2 1.189207115  
Taylor reductions= 2   

Terms z Term Sum Ln(x) Error 
1 8.6427E-02 0.086427233725890 0.691417869807118 1.73E-03 
2 6.4558E-04 0.086642427936652 0.693139423493214 7.76E-06 
3 4.8223E-06 0.086643392394074 0.693147139152589 4.14E-08 
4 3.6021E-08 0.086643397539913 0.693147180319306 2.41E-10 
5 2.6906E-10 0.086643397569809 0.693147180558474 1.47E-12 
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6 2.0098E-12 0.086643397569992 0.693147180559936 9.33E-15 
7 1.5013E-14 0.086643397569993 0.693147180559945 0.00E+00 

 
If we use an eight-times reduction we get the same results after just four Taylors terms. 
 

Ln(x)  Original X Reduced  
x=  2 1.002711275  
Taylor reductions= 8   

Terms z Term Sum Ln(x) Error 
1 1.3538E-03 0.001353802259956 0.693146757097522 4.23E-07 
2 2.4812E-09 0.001353803087030 0.693147180559489 4.56E-13 
3 4.5475E-15 0.001353803087031 0.693147180559955 -9.21E-15 
4 8.3346E-21 0.001353803087031 0.693147180559955 -9.21E-15 

 
 
The issue with arbitrary precision for ln(x) 
15 Taylor's terms to reach a result do not seem so bad at a first glance. However, when we are 
dealing with higher precisions e.g. 1,000 digits, 10,000, or even 100,000 digits we suddenly 
have to perform a lot more Taylor terms to find our result.   
 
Now it would come in very handy if we could estimate the needed number of Taylor terms 
for a given argument so we can optimize the use of argument reduction. Luckily, this can be 
estimated for ln(x). The nth -Taylor term for ln(x) is given by: 
 

2 ∙
௭మ೙షభ

ଶ௡ିଵ
, 𝑤ℎ𝑒𝑟𝑒 𝑧 =

௫ିଵ

௫ାଵ
        ( 53) 

 

Generally, we can stop the iteration when  2 ∙
௭మ೙షభ

ଶ௡ିଵ
< 10ି௉  Where P is the decimal 

precision. Now taking ln on both sides, rearranging and reducing we get: 
 

ln ቆ2
𝑧ଶ௡ିଵ

2𝑛 − 1
ቇ = ln(10ି௉) => (2𝑛 − 1) ln(𝑧) − ln(𝑛) + ln(2) = −𝑃 ∙ ln(10) => 

 
ln(𝑛) 𝑎𝑛𝑑 ln(2) 𝑐𝑎𝑛 𝑏𝑒 𝑖𝑔𝑛𝑜𝑟𝑒𝑑 𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒 𝑝 ≈ (2𝑛 − 1) ln(𝑧) = −𝑃 ∙ ln(10) => 

 

𝑛 =
ଵ

ଶ
(

ି௉∙୪୬(ଵ଴)

୪୬(௭)
+ 1)         ( 54) 

  
If we use the example of x=2 we get the following estimated Taylor's terms as a function of 
precision without argument reduction.  
 

Taylor terms 
needed: 

      

x/precision 10 16 100 1,000 10,000 100,000 1,000,000 
2      11  17  105  1,048  10,480  104,796  1,047,952  

 
Now to see the effect of argument reduction on improving the Taylor series we have recorded 
the amount of Taylor terms needed for various argument reductions from 1 to 8 on a random 
floating-point number between 1.xxx and 1.999. From the table, we see that the reduction in 
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the number of Taylor terms varies more than 8-10 fold between 0 as the reduction factor to a 
reduction factor of 8. 
The Auto reduction is the number of Taylor terms when we automatically find a reasonable 
reduction factor. Most of the time it varies between 8-10 reductions. 
 
The number of Taylor Terms. 
Digits 10 100 1,000 10,000 100,000 
Auto Red. 4 16 151 1,416 14,397 
0 Red 17 65 747 9,283 104,166 
1 Red. 12 48 519 6,024 65,054 
2 Red. 9 38 397 4,431 46,887 
3 Red. 7 32 321 3,500 36,587 
4 Red. 6 27 270 2,892 29,987 
5 Red. 5 24 233 2,464 25,403 
6 Red. 5 21 205 2,146 22,034 
7 Red. 4 19 183 1,901 19,454 
8 Red. 4 18 151 1,706 15,762 

 
Finding a reasonable reduction factor for ln(x). 
As can be seen in the above table a higher reduction factor greatly improved the performance. 
However, how many times reduction is adequate?   That at least x should be reduced to some 
arbitrary number. I use 1.001 as the target for ref [1] 
 
 First, eliminate the exponent of x reducing it to a number ≥ 1 x < 2.   
 

Solve x
ଵ

ଶౡ < limit => 

ln ൬x
ଵ

ଶౡ൰ < ln(limit) =>  
1

2୩
∙ ln(x) < ln(limit) => 

 
୪୬(୶)

୪୬ (୪୧୫୧୲)
< 2୩ => ln ቀ

୪୬(୶)

୪୬(୪୧୫୧୲)
ቁ /ln (2) < k    ( 55) 

 
A reasonable number for the limit is 1.001 If x=2 then you would need to perform 10 
reductions before summing the Taylor terms. After summarizing the Taylor terms, you would 
need to multiply that number by 2k+1 to get the correct value for ln(x). 
 
The performance table below shows the effect of using increasingly higher reduction factors. 
 
All measures are in milliseconds 

Digits 100 1,000 10,000 1,000,000 
Auto Red. 1.57 26 14,625 739,917 

0 Red. 3.67 113 93,300 5719,740 
1 Red. 2.75 99 62,262 3180,440 
2 Red. 2.4 59 47,735 2316,740 
3 Red. 1.25 48 36,048 2045,750 
4 Red. 1 43 29,021 1,500,050 
5 Red. 0.91 36 24,548 1,309,860 
6 Red. 1 34 21,391 1,148,780 
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7 Red. 0.91 31 19,182 957,246 
8 Red. 0.91 29 16,657 864,200 

 
As you can see for the higher number of precision, you will benefit even with increasing the 
reduction factor.  
 
Guard Digits for ln(x) calculation 
When summarizing a Taylor series as ln(x) you need quite a lot of summarizing and that will 
produce round-off errors.  
 
For our ln(x) function, we use a simple guard digits calculation that we add  
 

2+ceil(log10(digits)) as extra guard digits. 
 
Further Improvement of the methods for ln(x)? 
There is not a lot of things you can do to improve the ln(x) algorithm. However, consider the 
Taylor series expansion of ln(x): 
 

ln(x) = 2(
௫ିଵ

௫ାଵ
+

ଵ

ଷ
(

௫ିଵ

௫ାଵ
)ଷ +

ଵ

ହ
(

௫ିଵ

௫ାଵ
)ହ + ⋯ )     ( 56) 

 

If we use 𝑧 =
௫ିଵ

௫ାଵ
 we get: 

 

ln(x) = 2(𝑧 +
ଵ

ଷ
𝑧ଷ +

ଵ

ହ
𝑧ହ + ⋯ )      ( 57) 

 
As was the case when we discuss this in the exponential function paper, the issue is the 
division for each term. Since division is many times slower than calculation and addition. 
You could group two or more Taylor terms (sometimes referred to as coefficient scaling) and 
reduce the number of divisions. Consider the n’th and the n+1 term: 
 

…
𝑥௡

𝑛
+

𝑥௡ାଶ

𝑛 + 2
… 

 
Moreover, group them: 
 

…
(𝑛 + 2)𝑥௡

(𝑛 + 2)𝑛
+

𝑛 ∙ 𝑥௡ାଶ

𝑛(𝑛 + 2)
… => 

 

…
(𝑛 + 2)𝑥௡ + 𝑛 ∙ 𝑥௡ାଵ

𝑛(𝑛 + 2)
… 

 
Then you have replaced one division with three extra multiplication. The (n+2) can be done 
using a 32-bit or 64-bit integer since you never get to do many Taylor terms in real life. There 
is no need to stop at just grouping two terms together you can do that for three terms: 
 

…
(𝑛 + 2)(𝑛 + 4)𝑥௡ + 𝑛(𝑛 + 4)𝑥௡ାଵ + 𝑛(𝑛 + 2)𝑥௡ାଶ

𝑛(𝑛 + 2)(𝑛 + 4)
… 
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Saving two divisions, however, gaining a few more addition and multiplications. 
 
Because arbitrary precision division is, much more time-consuming to calculate it will be 
highly advantageous to implement this grouping of Taylor terms. With four to five terms 
grouped, you get a speedup of 2-3 times compared to not grouping terms together. 
 
Log(x) using the Newton method 
This method is only relevant if you have a very fast way to compute ex. This usually is the 
case since exp(x) is faster to calculate than ln(x) when using arbitrary precision.  The method 
solves the equation x=ln(y) by taking the exp() of both sides: exp(x) = y and then solving it 
using the Newton method, which yields the iteration: 
 

𝑥௡ାଵ = 𝑥௡ − 1 +
௬

௘ೣ೙
        ( 58) 

Algorithm 7 
 
Unfortunately, it will require a division; however, ex is more time-consuming to calculate 
than a division so it does not matter in the big picture. The Newton method has a quadratic 
convergence rate doubling the number of correct digits for each iteration.  For precision, less 
than 10,000 digits the Taylor series from the previous chapter is faster but above 10,000 
digits the Newton method exceeds the performance of the Taylor series. At 100,000 digits 
Newton's method is approximately 40% faster than the Taylor series. 
 
Log(x) using the Halley method 
Since the Newton method is faster than the Taylor series for precision above 10,000 digits it 
is interesting to check if the cubic convergence Halley method is even faster.  The Halley 
method with cubic convergence is: 
 

𝑥௡ାଵ = 𝑥௡ + 2
௬ି௘ೣ೙

୷ା௘ೣ೙
        ( 59) 

Algorithm 8 
 
The benefit is that you triple the number of correct digits per iteration versus Newton double 
per iteration. The Halley method is indeed faster exceeding the Newton method around a 
1,000 digits precision and is approximately 8-10% faster than the Newton Method. 
 
Log(x) using the AGM method 
The AGM method is the method that has the best asymptotic performance of all the methods. 
It was found around 1975 and is described in the Yacas book [6]: 
 

ln(𝑥) = 𝜋 ∙ 𝑥
ଵା

ర

ೣమ(ଵି
భ

ౢ౤ (ೣ)
)

ଶ∙஺ீெ(௫,ସ)
       ( 60) 

 
It looks more complex than any of the other methods but the trick is to observe that if x is 
“large enough” then the numerator is one. For a given precision “large enough” mean 

that 
ସ

୶మ < 10ି୔, where P is the wanted precision. In case x is not “large enough” we need to 

multiply it with 2s. (Which is argument expansion and not argument reduction as we are used 
to) Since we expand the argument with a factor of 2s we would need to subtract it after the 
AGM method with 𝑠 ∙ ln (2): 
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ln(𝑥) = ln(2௦𝑥) − 𝑠 ∙ ln (2)       ( 61) 

 
For a given precision, P, s is found below: 
  

𝑠 = 𝑃
୪୬ (ଵ଴)

ଶ∙୪୬ (ଶ)
+ 1 −

୪୬ (௫)

୪୬ (ଶ)
       ( 62) 

 
With all components in place, we can now devise our AGM algorithm: 
 

ln(𝑥) = ln(2௦𝑥) − 𝑠 ∙ ln(2) =
గ∙௫ೞషమ

ଶ∙஺ீெ(௫ೞషమ,ଵ)
− 𝑠 ∙ ln(2) , for  x > 1  ( 63) 

 

If x<1 then we use the identity ln(𝑥) = −ln (
ଵ

௫
) and use the AGM algorithm with 1/x. 

Even though we are using two arbitrary precision constants, π and ln(2) that needs to be 

calculated to the same precision, P and we need to perform approximately 2
୪୬ (௉)

୪୬ (ଶ)
 iterations to 

calculate the AGM value the method outperformed any of the other methods presented here 
for precision exceeding approximately 4,000 digits. See the log(x) performance chart. 
 
AGM Algorithm 
The arithmetic-geometric mean algorithm is defined as two positive numbers x & y by the 
following algorithm AGM(x,y)= lim

௡→ஶ
𝑥௡ = lim

௡→ஶ
𝑦௡. 

 
AGM(x,y) 
 ao=x 
 g0=y 
 iterate: 

  𝑎௡ାଵ =
ଵ

ଶ
(𝑎௡ + 𝑔௡) 

   𝑔௡ାଵ = ඥ𝑎௡𝑔௡ 
 until an+1=gn+1 

 return an+1 

Algorithm 9 
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Log(x) performance 

 
Log Performance. 
 
Based on the performance chart Taylor series log is the fastest up to approximately 4,000 
digits whereas after the log AGM becomes the fastest in both the threaded and non-threaded 
versions. Above 10,000 digits, the Newton and Halley method also exceeds the performance 
of the Taylor series version. 
 
Log(x) using the AGM method and multiple threads 
The AGM method lends itself to being implemented using threads. There are three basic 
components of the AGM method. 
 

 Calculating the constant π 
 Calculating the constant ln(2) 
 Calculating the AGM value 

 
These three calculations can run in parallel in separate threads with a few simple changes to 
the source code using C++ lambda functions. 
 
Recommendation for calculating log(x) 
Based on the performance measure of the various ln() methods recommend: 
 

 Ln(x) using Taylor series with argument reduction and coefficient scaling for 
precision up to approx. 4,000 digits.  

 If the AGM method is available then use it above 4,000 digits. 
  Moreover, use AGM in multi-threaded versions to increase performance. 
 If the AGM method is not available then use either the Newton method or the better 

Halley method when precision exceeds 10,000 digits. 
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 Always use argument reduction to increase performance  
 Coefficient scaling (or grouping of terms) can speed up calculation by a factor of two-

three and is therefore recommended. 
 
Log10(x): 
To calculate Log10(x) we use the equation: Log10(x)=Loge(x)/Loge(10) and loge(x) has been 
handled previously. Loge(10) is a constant, see a later section of this document. 
 

x to the power of y 
 
To calculate xy  we use a combination of the exponential and logarithm function using the 
equation: 

𝑥௬ = 𝑒௬∙୪୬ (௫)         ( 64) 
 
Exp() and Log() is a time-consuming functions for arbitrary precision. There is nothing much 
you can do about that unless y is an integer in which case we use the algorithm for integer 
power listed below: if y is an integer then we can rewrite the equation of xy:  
 

𝑥௬ = (𝑥)
೤

మ
ା

೤

మ = (𝑥)
೤

మ(𝑥)
೤

మ = (𝑥 ∙ 𝑥)
೤

మ       ( 65) 
 
 
Algorithm for xy when y is an integer 
function ipower(x,y) 
 r=1 
 while(y>0) 
  if(y is odd) 
   r=r*x 
  x=x*x 
  y=y/2 
 return r 
Algorithm 10 
  

If y is < 0 we use 
y

y

x
x

1
 and return 

r

1
 instead of r in the algorithm above. Now if we 

happen to come across x as a true power of 2 and y is an integer then we can make further 
optimization, by noticing that: 
 

𝑥 = 2௡ 𝑎𝑛𝑑 𝑛 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 => (2௡)௬ = 2௡∙௬   ( 66) 
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Constants: e, Loge(2), Loge(10) & π 
 
Constants are not constants since it depends on the actual precision we need. We need the 
following constants: e, Loge(2), Loge(10), and π available for the actual precision of the 
operations. To avoid repeated calculations of the same constant we store the constant and 
reuse it the next time we need one of these constants. e.g. let’s assume we need one of the 
constants with 100,000 digits precisions. We then calculate this constant only once. The next 
time we need the constant with equal or less precision (≤100,000 digits) we then used the 
stored constant and round it to the precision needed ≤ 100,000 digits). If on the other hand, 
we need the constant with higher precision we then discard the constant stored and 
recalculate the constant with the higher precision and used that as the new stored constant. 
 
The constant e 
The transcendental constant e (same as exp(1)) can be more beneficial calculated by other 
methods than the ones presented in the previous section. There is a Spigot-like algorithm 
from the computer Journal 1968 (A H J Sale) that I have modified to serve the purpose of use 
in the arbitrary precision library.  The algorithm is a magnitude faster than using the Taylor 
series for calculating exp(1) even with the enhancement presented in this paper.  Please ref to 
[11] for further details. However this method is not the fastest one, see the binary splitting 
method for e. 
 
AHJ Sale algorithm for e 
The algorithm was presented in [11] back in the sixties and accompanied by an Algol 60 
version. The original code has been ported to the C++ environment with a few additional 
improvements. The result of the calculation is delivered as a decimal string see the source 
code below. The function is called with the wanted number of digits for e. Based on this the 
needed number of Taylor Terms is calculated and then the main loop delivers one decimal 
number per loop. 
 
Binary splitting method for e 
The binary splitting methods (see [12]) equate the Taylor series terms with two integers p and 
q and then it is just a matter of dividing p with q to get the approximation for e. 
 

𝑒 = ∑
ଵ

௞!
= 1 +

ଵ

ଵ
+

ଵ

ଶ
+

ଵ

଺
+

ଵ

ଶସ
+ ⋯ஶ

௞ୀ଴ =
௉(଴,௞)

ொ(଴,௞)
     ( 67) 

 
The notation P(0,k)/Q(0,k) represents the first k terms of the above series. For any given 
value of a & b, we can compute P(a,b) and Q(a,b) as follows using the binary splitting 
method. (a and b are integers and a<b) following the recursion: 
 
Algorithm: Binary splitting method for e 

  𝑚 =
௔ା௕

ଶ
 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 

  P(a,b)=P(a,m)Q(m,b)+P(m,b) 
  Q(a,b)=Q(a,m)Q(m,b) 
 
  And P(b-1,b)=1;  Q(b-1,b)=b; 
Algorithm 11 
 



The Math behind arbitrary precision 
 

23 February 2023       www.hvks.com/Numerical/arbitrary_precision.html Page 63 
 

You continue this recursive breakdown until a+1=b and you set P(a,b)=1 and Q(a,b)=b and 
let the formula reverse bottom up. 
 
Notice if you need more than the first 19 Taylor Terms you will need more than 64-bit 
variables to hold p and q. You would need to switch to arbitrary integer precision. This is 
done using the type int_precision (instead of e.g. uintmax_t for 64-bit environment) from the 
author's arbitrary precision packages. 
 
To calculate how many Taylor terms we need as a function of required decimal digits of e. 
We resort to the Stirling approximation formula for! We notice that to get to P decimal 
precision of e and the number of Taylor terms is k we need it to satisfy the equation that 
k!>10p. 

𝑘! ≈ ൬
𝑘

𝑒
൰

௞

√2𝜋𝑘 , 𝑆𝑡𝑖𝑟𝑙𝑖𝑛𝑔 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 

൬
𝑘

𝑒
൰

௞

√2𝜋𝑘 > 10௉ 

 
Taking log() on both sides you get: 
 

𝑘 ∙ (log(𝑘) − 1) +
ଵ

ଶ
log(2𝜋𝑘) > 𝑃 ∙ 𝑙𝑜𝑔(10)    ( 68) 

 
To solve this for k, we can use Newton's methods that find a solution within a few iterations. 
Notice we only need to find the next higher integral number for k. 
 
To reduce the number of recursive calls and increase the performance you would not have to 
wait until a+1=b before setting p, q for the first time. We can use a pre-calculated formula 
that calculates p and q directly when a+2=b, a+3=b, and a+4=b to reduce the number of 
recursive calls we make and increase the performance. 
 
Performance for various e algorithm 

 
 
Recommendation for calculating e 
Use the binary splitting method, which is approx. 20 times faster than the AHJ Sale method 
when calculating e with 100,000 digits. The binary splitting method is approx. 40 times faster 
than using the Taylor series for exp(1) describe in the previous chapter. 
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The constant Loge(2) 
Is calculated the same way as for loge(x) with the exception that we can determine a fixed 
number of argument reductions using square root. Since the argument is 2 we know that 
squaring it twice will reduce the number below 1.19 and thereby make the Taylor series 
converge rapidly. After we have found the result to the given precision we then multiply the 
result by 23 to compensate for the argument reduction. However, in our newer version, we 
have applied the dynamic argument reduction to further speed up the calculation as discussed 
under Loge(x).  However, as for e, there exist other methods that are faster. [13] 
 
The constant Loge(10)  
Is calculated the same as for Loge(2) except that we square 10 four times in the argument 
reduction to get the number below 1.16 and then use our Taylor series to quickly find the 
result of Loge(10) and in the back end we multiply with 25 instead of 23 
However, in our newer version, we have applied the dynamic argument reduction to further 
speed up the calculation as discussed under Loge(x).  Again as for loge(x), there exist other 
algorithms that are faster. See [13]. 
 
The constant π  
This is another interesting constant that there has been devoted much attention to for the last 
many thousand years. For a very good walkthrough of different algorithms to calculate π we 
recommend you read [5] Borwein, “PI and the AGM”. However [12] 
For our implementation, we can use one of the many algorithms for calculating π that can be 
found in [5][3][14][15][16]. In [17] we walk through many of these algorithms for π with 
practical examples of implementations. 
 
Borwein π 
Algorithm for Borwein π 

𝑆𝑒𝑡 𝑥଴ = √2, 𝜋଴ = 2 + √2, 𝑦଴ = √2
ర

 
The repeat for i=1,2,3,… until sufficient accuracy has been obtained. 

𝑥௜ାଵ =
1

2
ቆඥ𝑥௜ +

1

ඥ𝑥௜

ቇ 

𝜋௜ାଵ = 𝜋௜ ൬
𝑥௜ାଵ + 1

𝑦௜ + 1
൰ 

𝑦௜ାଵ =

𝑦௜ඥ𝑥௜ାଵ +
1

ඥ𝑥௜ାଵ

𝑦௜ + 1
 

Algorithm 12 
 
Until sufficient precision has been obtained for π. The nice part of this algorithm is that we 
only use basic operations like +,*, /, and then the square root function. 
 
To see how the algorithm works let's calculate π. 
As we can see after 3 iterations we have found π to the limit of IEEE754 arithmetic    

Iteration x π y Error 
0 1.414214 3.41421356237309 1.189207 0.272621 
1 1.015052 3.14260675394162 1.000673 0.001014 
2 1.000028 3.14159266096604 1 7.38E-09 
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3 1 3.14159265358979 1 0 
 
 
Brent-Salamin π 
Another algorithm and slightly better than the Borwein algorithm is the Gauss-Legendre and 
the deviation is also known as Bent-Salamin. 
 
Algorithm for Brent-Salamin π 

𝑆𝑒𝑡 𝑎଴ = 1, 𝑏଴ =
1

√2
, 𝑐଴ = 0.5 

Then repeat for n=0,1,2… until sufficient accuracy has been obtained. 

𝑎௡ାଵ =
1

2
(𝑎௡ + 𝑏௡) 

𝑏௡ାଵ = ඥ𝑎௡𝑏௡ 
𝑐௡ାଵ = 𝑐௡ − 2௡ାଵ(𝑎௡ାଵ − 𝑏௡)ଶ 

𝜋௡ାଵ = 2
𝑎௡ାଵ

ଶ

𝑐௡ାଵ
 

Algorithm 13 
 
Brent-Salamin 
π 

Iteration a b C Π Error 
0 1 0.707107 0.5   8.58E-01 
1 0.853553 0.840896 0.457107 3.18767264271211 4.61E-02 
2 0.847225 0.847201 0.456947 3.14168029329765 8.76E-05 
3 0.847213 0.847213 0.456947 3.14159265389545 3.06E-10 
4 0.847213 0.847213 0.456947 3.14159265358979 8.88E-16 

 
As for the Borwein algorithm, we get quadratic convergence doubling the number of correct 
digits for each iteration. After 10 iterations we have more than 1,000 digits and after 20 
iterations more than 1 million digits. Borwein also showed several higher-order convergence 
rate algorithms for finding π, with a convergence rate for each iteration that multiplies the 
number of correct digits with a factor of 3, 4, 5, and 9. However, these algorithm requires a 
lot more work to be done per iteration and is usually not worth implementing compare to the 
current one with quadratic convergence. 
 
Binary splitting of the Chudnovsky infinite series 
There is one method that beats all the classic methods as outlined in [17] and that is the 
Chudnovsky method using binary splitting. 
Instead of adding each series of terms we instead try to find two integers, P & Q that equate 
to the first k terms of the series. 
 

1

𝜋
= 12 ෍

(−1)௡(6𝑛)! (13591409 + 545140134𝑛)

(3𝑛)! (𝑛!)ଷ640320ଷ௡ାଷ ଶ⁄

ஶ

௡ୀ଴

=> 

 

1

𝜋
=

√10005

4270934400
෍

(−1)௡(6𝑛)! (13591409 + 545140134𝑛)

(3𝑛)! (𝑛!)ଷ640320ଷ௡

ஶ

௡ୀ଴

=> 
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1

𝜋
=

√10005

4270934400

𝑃

𝑄
 

 
Given the first k terms of the series, you get (see [15]): 
 

1

𝜋
=

√10005

4270934400

𝑃(0, 𝑘) + 13591409𝑄(0, 𝑘)

𝑄(0, 𝑘)
=> 

 

𝜋 =
ସଶ଻଴ଽଷସସ଴଴∙ொ(଴,௞)

௉(଴,௞)ାଵଷହଽଵସ଴ଽ (଴,௞)

ଵ

√ଵ଴଴଴ହ
+ 𝑂(151931373056000ି௞)   ( 69) 

 
Where k, is found to satisfy the precision of the number. E.g. for precision P we have 
equality: 

  10ି௉ < 151931373056000ି௞ => 𝑘 >
௉∙௟௢௚(ଵ଴)

୪୭୥ (ଵହଵଽଷଵଷ଻ଷ଴ହ଺଴଴଴)
  

 
We take k as the ceiling of: 
 

 𝑘 = ቒ
௉∙௟௢௚(ଵ଴)

୪୭୥ (ଵହଵଽଷଵଷ଻ଷ଴ହ଺଴଴଴
ቓ        ( 70) 

 
Algorithm for Chudnovsky method for π using binary splitting 
To find the P(0,k) and Q(0,k) you can use a recursive formula for P(a,b) & Q(a,b) and a<b:  

 𝑚 =
௔ା௕

ଶ
 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 

 P(a,b)=P(a,m)Q(m,b)+P(m,b)R(a,m) 
 Q(a,b)=Q(a,m)Q(m,b) 
 R(a,b)=R(a,m)R(m,b) 
 
 Where: 
 P(b+1,b)=(13591409+545140134b)(2b-1)(6b-5)(6b-1)(-1)b 
 Q(b-1,b)=10939058860032000b3 
 R(b-1,b)= (2b-1)(6b-5)(6b-1) 
Algorithm 14 
 
Recommendation for the Infinite series for π 
I recommend always using the binary spitting algorithm for Chudnovsky, which has the 
fastest performance of them all. It is no surprise that it is the Chudnovsky binary splitting 
method that is used in the record-breaking calculation of π with 100 Trillion digits (2022).  
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Trigonometric functions: 
There are quite a few ways you can calculate trigonometric functions with arbitrary precision.  
Traditional Taylor series expansion has been used, however. This section will examine: 
 

 Sin(x) using Taylor series, argument reduction, and coefficient scaling. 
 Cos(x) using Taylor series, argument reduction, and coefficient scaling. 
 Tan(x) using various methods. 
 Arcsin(x) using Taylor series, argument reduction, and coefficient scaling 
 Arccos(x) using arcsin(x) 
 Arctan(x) using Taylor series, argument reduction, and coefficient scaling. 
 Arctan(x) using other methods. 

   
The most common one for arbitrary precision libraries is the standard Taylor series expansion 
method.  
 
Sin(x) using Taylor Series 
 
The standard way of calculating sin(x) using the Taylor Series. Sin(x) can be found with the 
Taylor series: 
 

sin(𝑥) = 𝑥 −
௫య

ଷ!
+

௫ఱ

ହ!
−

௫ళ

଻!
+

௫వ

ଽ!
…      ( 71) 

 
Where the similarity to the sine hyperbolic functions is obvious, which Taylor series is: 
 

sinh(𝑥) = 𝑥 +
௫య

ଷ!
+

௫ఱ

ହ!
+

௫ళ

଻!
+

௫వ

ଽ!
…      ( 72) 

 
Where the only difference is the alternating sign between the Taylor Terms. Sin(x) is defined 
for any real number.  
 
However, before we start the Taylor series we first reduce the argument x. We will do that in 
four steps. 
 
Step 1: We notice that sin(x) is cyclic with a period of 2π so we can easily reduce any 
argument > 2π so it falls between zero and 2π by simply taking x modulo 2π.  
 
Step 2:  We can further reduce x so it is between 0..π using the identity:   
  sin(x)=-sin(x-π) for x≥π. 
 
Step 3: We reduce it further by using the symmetry around 

గ

ଶ
 𝑡𝑜 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 0. .

గ

ଶ
: 

𝑠𝑖𝑛(𝑥) = 𝑠𝑖𝑛 ቀ𝑥 −
𝜋

2
ቁ 𝑓𝑜𝑟 𝑥 ≥

𝜋

2
 

If π is ‘expensive’ to calculate (which is usually the case with arbitrary precision)  we can 
omit step 3 since we have a different way to obtain the same thing by just increasing the 
argument reduction factor. See the section on finding a reasonable reduction factor. 
 
Step 4: Finally we reduced the argument k number of times using the trisection identity:  
  sin(3x)=3sin(x)-4sin3(x)   
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 until x is below a certain threshold. It is obvious from the sin(x) Taylor series that the 
smaller x is the fewer terms we would need. 
 
This argument reduction is done to reduce the number of Taylor iterations and to minimize 
the round-off errors and calculation time. 
 
After the Taylor series has converged, we use the trisection identity reverse k numbers of 
times to find our result for sin(x).  
 
Example 1. Sin(x) using the Taylor series 
To see how this algorithm works let us find the sin(0.7). After the 8th Taylor term, the error is 
zero and the result is ~ 0.6442176872. 
 

sin(x)  Original X Reduced  
x=  0.7 0.7  
Taylor reductions= 0   

Terms Term value Term Sum sin(x) Error 
1 7.00E-01 0.70000000000 0.7000000000 -5.58E-02 
2 5.72E-02 0.642833333 0.6428333333 1.38E-03 
3 1.40E-03 0.64423391667 0.6442339167 -1.62E-05 
4 1.63E-05 0.64421757653 0.6442175765 1.11E-07 
5 1.11E-07 0.64421768773 0.6442176877 -4.94E-10 
6 4.95E-10 0.64421768724 0.6442176872 1.55E-12 
7 1.56E-12 0.64421768724 0.6442176872 -3.66E-15 
8 3.63E-15 0.64421768724 0.6442176872 0.00E+00 

 
 
Example 2. Sin(x) using Taylor series and argument reduction 
We can see the effect in Step 4 by increasing the number of argument reductions. E.g. for two 
reductions you get the same result after only five iterations. The argument is reduced twice 
from 0.7 to 0.077… 
 

sin(x)  Original X Reduced  
x=  0.7 0.077777778  
Taylor reductions= 2   

Terms Term value Term Sum sin(x) Error 
1 7.78E-02 0.07777777778 0.6447587967 -5.41E-04 
2 7.84E-05 0.07769936 0.6442175235 1.64E-07 
3 2.37E-08 0.07769938357 0.6442176873 -2.36E-11 
4 3.42E-12 0.07769938357 0.6442176872 2.00E-15 
5 2.87E-16 0.07769938357 0.6442176872 0.00E+00 

 
 
If we do four argument reductions in step 4, we get the result after only three iterations 
 

sin(x)  Original X Reduced  
x=  0.7 0.008641975  
Taylor reductions= 4   

Terms Term value Term Sum sin(x) Error 
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1 8.64E-03 0.00864197531 0.6442243516 -6.66E-06 
2 1.08E-07 0.008641868 0.6442176872 2.49E-11 
3 4.02E-13 0.00864186774 0.6442176872 0.00E+00 

 
Again, we notice that using argument reduction can seriously cut down the number of Taylor 
terms needed and thereby increase the performance of calculating sin(x). 
 
The issue with arbitrary precision for sin(x) 
The Number of Taylor terms to reach a result does not seem so bad at a first glance. In the 
previous examples, we were only using approx. 15 decimal digits. However, when we are 
dealing with higher precisions e.g. 1,000 digits, 10,000, or even 100,000 digits we suddenly 
have to perform a lot more Taylor terms to find our result. In Yacas book of algorithms [5] 
they found a bound for the number of Taylor terms, n needed for the sin(x) as a function of 
the number of precision in digits P and the magnitude, M of the argument x=10M: 
 

2(𝑛 + 1) ≈
(𝑃 − 𝑀) ∙ ln(10)

ln(𝑃 − 𝑀) − 1 − 𝑀 ∙ ln(10)
=> 

 

𝑛 ≈
ଵ

ଶ

(௉ିெ)∙୪୬(ଵ଴)

୪୬(௉ିெ)ିଵିெ∙୪୬(ଵ଴)
− 1      ( 73) 

 
 
The number of Taylor terms needed for sin(x) as a function of precision and argument 
magnitude. 
 

Digits 101 102 103 104 105 106 107 108 
x 

        

101 (11) 88 319 1,948 14,022 109,512 898,358 7,615,327 

100 8 31 194 1,402 10,951 89,835 761,532 6,608,768 

10-1 3 19 140 1,095 8,983 76,153 660,876 5,837,230 

10-2 2 14 109 898 7,615 66,087 583,723 5,227,006 

10-3 1 11 90 761 6,608 58,372 522,700 4,732,291 

10-4 1 9 76 661 5,837 52,270 473,229 4,323,125 

10-5 1 7 66 584 5,227 47,323 432,312 3,979,084 

10-6 1 6 58 522 4,732 43,231 397,908 3,685,765 

10-7 1 6 52 473 4,323 39,791 368,576 3,432,721 

10-8 1 5 47 432 3,979 36,857 343,272 3,212,190 

10-9 (1) 5 43 398 3,686 34,327 321,219 3,018,284 

 
The table above is quite interesting. E.g., the effect of argument reduction for a precision of 
100 digits reduces the number of Taylor terms by a factor of six between arguments of 1 in 
magnitude down to the argument of 10-9 in magnitude. For a precision of 100,000 digits, the 
factor is only around three and for 100M digits, it is around 2.2. The lesson here is that 
argument reduction is more efficient for smaller precision than for higher precision. 
However, overall argument reduction is beneficial at any precision. There is another 
approximation for n based on the actual value of x not just the magnitude.  It usually gives a 
little bit less amount of needed Taylor terms. This formula can be quite useful: 
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𝑛 ≈
௉∙୪୬(ଵ଴)

ଶ(୪୬(௉)ି୪୬ (୶))
− 1        ( 74) 

 
Finding a reasonable reductions factor for sin(x) 
As can be seen in the above table a higher reduction factor greatly improved the performance. 
However, how many times reduction is adequate? The argument reduction on the front end is 
a division per reduction. In the back end, you do this as many times as you did the reduction 
on the front end.  Sin(3x)=3Sin(x)-4(sin3(x)) taking sin(x) out as a factor you get this: 
Sin(3x)=Sin(x)(3-4(sin2(x))) or one subtraction and three multiplication. Using  

 

𝑛 ≈
௉∙୪୬(ଵ଴)

ଶ(୪୬(௉)ି୪୬ (୶))
− 1        ( 75) 

 
At a starting point of x=1, you get for P=1,00digits that the needed Taylor term is 24. Doing 
three reductions you get x=1/33 = 0.037. Using the above formula we expect we would only 
need 14 Taylor terms. Each Taylor term requires one addition/subtraction, 1 division, and 
multiplication which yield a total saving of 10 subtraction, 10 division, and 10 multiplication. 
Compared to three reductions on the front-end is three divisions and on the backend three 
subtraction and nine multiplication a total saving of seven subtraction/addition, one 
multiplication, and seven division. Since division is a magnitude slower than multiplication 
and addition/subtraction, we can give a rough saving equivalent with seven divisions. For 
higher precisions, the saving becomes larger.   

We automatically calculate the reduction factor as 𝑘 = 8 ቒ
ଶ

ଷ
ln(2) ∗ ln (𝑃)ቓ  for higher 

precisions, and then we adjusted the magnitude of x. After Step 2, we know that x is in the 
range of [0..π] this is equivalent that the exponent of our number (in base 2) being in the 
range [-∞..1]. We add the exponent to the reduction factor. This has the effect that our 
reduction factor gets smaller if x is very small preventing us from doing unnecessary 
reductions. If x is very small, the reduction factor is negative and we simply do not perform 
any argument reductions at all. E.g. for P=100 you get 24 and for P=10,000 you get 40. To 
compensate for the inaccuracy when adding the front and back end calculation, we increase 
the precision by a quarter of the k factor. The increased precision only generates a small 
performance penalty compared to the extra saving in Taylor's terms of the overall calculation.  
  
Guard Digits for sin(x) 
When summarizing a Taylor series as sin(x) you need quite a lot of summarizing and that will 
produce round-off errors.  
 
For our sin (x) function, we use a simple guard digits calculation that we add  
 

 2+ceil(log10(precision)) as extra guard digits as the working precision. 
 
Further Improvement of the methods for sin(x)? 
There is not a lot of things you can do to improve the sin(x) algorithm. However, consider the 
Taylor series expansion of sin(x): 
 

sin(𝑥) = 𝑥 −
௫య

ଷ!
+

௫ఱ

ହ!
−

௫ళ

଻!
+

௫వ

ଽ!
…       ( 76) 

 
The issue is the division for each term. Since division is many times slower than calculation 
and addition. You could group two or more Taylor terms (sometimes referred to as 
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coefficient scaling) and reduce the number of divisions. Consider the n’th and the n+1 term 
assuming the n’th term is the negative part (for the moment): 
  

… −
𝑥௡

𝑛!
+

𝑥௡ାଶ

(𝑛 + 2)!
… 

Moreover, group them: 
 

…
−(𝑛 + 1)(𝑛 + 2)𝑥௡

(𝑛 + 1)(𝑛 + 2)𝑛!
+

𝑥௡ାଶ

(𝑛 + 2)!
… => 

 

…
−(𝑛 + 1)(𝑛 + 2)𝑥௡ + 𝑥௡ାଶ

(𝑛 + 2)!
… 

 
If the n’th term is not the one starting with the minus sign you can simply just flip the sign in 
the above equation, yielding: 
 

…
+(𝑛 + 1)(𝑛 + 2)𝑥௡ − 𝑥௡ାଶ

(𝑛 + 2)!
… 

 
Then you have replaced one division for two multiplication. The (n+1)(n+2) can be done 
using a 32-bit or 64-bit integer since you never get to do so many Taylor terms in real life. 
There is no need to stop at just grouping two terms together you can do that for three terms or 
more: 
 

…
−(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)𝑥௡ + (𝑛 + 3)(𝑛 + 4)𝑥௡ାଶ − 𝑥௡ାସ

(𝑛 + 4)!
… 

 
Saving two divisions, however, gaining a few more addition and multiplications. 
 
It is very easy to determine when we need to start with a negative sign by just testing if n’th 
term divided by 2 is an odd number (start with a minus sign) or an even number starting with 
plus sign and then alternative the sign thereafter. 
 
Recommendation for calculating sin(x) 
We can be based on the performance measure of the various sin() methods recommend: 
 

 Always use the cyclic and symmetry rules to reduce the x to the range [0. 𝜋]  
 It is unnecessary to reduce it down to the range [0. . .

గ

ଶ
] using symmetry avoiding 

another calculation of π. 
 Use Taylor for sin(x) using an aggressive reduction factor to speed up the Taylor term 

calculation. 
 Use Coefficient scaling to increase performance 

 
Cos(x) using Taylor series: 
For cos(x) we again use a Taylor series until any additional addition does not change the 
result for the given precision of the number. 
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cos(𝑥) = 1 −
௫మ

ଶ!
+

௫ర

ସ!
−

௫ల

଺!
+

௫ఴ

଼!
… 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑟𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑥   ( 77) 

 
We can use the equivalent four steps produced for cos(x), mapping it into the interval[0. . .

గ

ଶ
]. 

 
Step 1: We notice that cos(x) is cyclic with a period of 2π so we can easily reduce any 
argument > 2π so it falls between 0 and 2π by simply taking x modulo 2π.  
 
Step 2:  We can further reduce x so it is between 0..π using the identity:   
  cos(2π-x)=cos(x) for x≥π. 
 
Step 3: We reduce it further by using the symmetry around 

గ

ଶ
 𝑡𝑜 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 0. .

గ

ଶ
: 

𝑐𝑜𝑠(𝑥) = −𝑐𝑜𝑠 ቀ𝑥 −
𝜋

2
ቁ 𝑓𝑜𝑟 x ≥

π

2
. 

If π is ‘expensive’ to calculate (which is usually the case with arbitrary precision)  we can 
omit step 3 since we have a different way to obtain the same thing by just increasing the 
argument reduction factor. See the section on finding a reasonable reduction factor. 
 
Step 4: Finally we reduced the argument k number of times using the trisection identity:  
  cos(3x)=-3cos(x)+4cos3(x)   
until x is below a certain threshold. It is obvious from the cos(x) Taylor series that the smaller 
x the fewer terms we would need. We could also use the double-angle identity:  
  cos(2𝑥) = 2𝑐𝑜𝑠ଶ(𝑥) − 1 
Although the trisection identity serves us well for calculating sin(x) it turns out that there is a 
much higher loss of precision using the trisection identity over the double angle formula. See 
later. 
 
This argument reduction is done to reduce the number of Taylor iterations and to minimize 
the round-off errors and calculation time. 
 
After the Taylor series has converged, we use the trisection or double angle identity reverse k 
number of times to find our result for cos(x).  
 
Example 1. Cos(x) using the Taylor series 
To see how this algorithm works let us find the cos(0.7). After the 8th Taylor term, the error is 
zero and the result is ~ 0.7648421873. 
 

cos(x)  Original X Reduced  
x=  0.7 0.7  
Taylor reductions=  0   
Terms Term value   cos(x) Error 
1 1.00E+00 1.0000000000 1.0000000000 -2.35E-01 
2 2.45E-01 0.7550000000 0.7550000000 9.84E-03 
3 1.00E-02 0.7650041667 0.7650041667 -1.62E-04 
4 1.63E-04 0.7648407653 0.7648407653 1.42E-06 
5 1.43E-06 0.7648421950 0.7648421950 -7.76E-09 
6 7.78E-09 0.7648421873 0.7648421873 2.88E-11 
7 2.89E-11 0.7648421873 0.7648421873 -7.76E-14 
8 7.78E-14 0.7648421873 0.7648421873 0.00E+00 
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Example 2. Cos(x) using Taylor series and argument reduction 
We can see the effect in Step 4 by increasing the number of argument reductions. E.g. for two 
reductions you get the same result after only five iterations. The argument is reduced twice 
from 0.7 to 0.077… 

     
cos(x)  Original X Reduced  
x=  0.7 0.077777778  
Taylor reductions=  2   
Terms Term value   cos(x) Error 
1 1.00E+00 1.0000000000 1.0000000000 -2.35E-01 
2 3.02E-03 0.9969753086 0.7647284320 1.14E-04 
3 1.52E-06 0.9969768334 0.7648422102 -2.29E-08 
4 3.07E-10 0.9969768331 0.7648421873 2.48E-12 
5 3.32E-14 0.9969768331 0.7648421873 2.78E-15 

 
If we do four argument reductions in step 4, we get the result after only four iterations 
 

cos(x)  Original X Reduced  
x=  0.7 0.008641975  
Taylor reductions=  4   
Terms Term value   cos(x) Error 
1 1.00E+00 1.0000000000 1.0000000000 -2.35E-01 
2 3.73E-05 0.9999626581 0.7648407840 1.40E-06 
3 2.32E-10 0.9999626584 0.7648421873 -3.63E-12 
4 5.79E-16 0.9999626584 0.7648421873 -2.81E-13 
     

Again, we notice that using argument reduction can seriously cut down the number of Taylor 
terms needed and thereby increase the performance in calculating cos(x). 
 
We notice that the error has increased and we cannot find an answer better than an absolute 
error or ~1E-13. The higher the reduction factor the worse it gets. It has to be noticed that this 
issue arises only from the use of a reduction factor and not from the use of the Taylor series.  
 
Although many of the same arguments used in the calculation of sin(x) also apply for cos(x), 
including aggressive use of argument reduction, coefficients scaling, etc. We have to be 
careful how aggressive our argument reduction can be. 
 
Cos(x) using double angle reduction 
Argument reduction reduces x to a much smaller value that is much more sensitive to round-
off errors for cos(x) than its counterpart for sin(x). It is therefore better to use the double-
angle formula: 
 

  cos(2𝑥) = 2𝑐𝑜𝑠ଶ(𝑥) − 1       ( 78) 
 
Alternatively, even better written as:  
  

  cos(2𝑥) = 2(1 − cos(𝑥))ଶ − 4(1 − cos(𝑥)) + 1   ( 79) 
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Although it does not prevent round-off errors it is less sensitive that the trisection formula. 
We calculate the reduction factor for cos(x) as 𝑘 = 2⌈ln(2) ∗ ln (𝑃)⌉  for higher precisions, 
and then we adjusted the magnitude of x. After Step 2, we know that x is in the range of [0..π] 
this is equivalent that the exponent of our number (in base 2) being in the range [-∞...1]. We 
add the exponent to the reduction factor. This has the effect that our reduction factor gets 
smaller if x is very small preventing us from doing unnecessary reductions. If x is very small, 
the reduction factor is negative and we simply do not perform any argument reductions at all. 
 
Cos(x) using sin(x) 
Since we have a very fast and robust implementation of sin(x) that does not suffer from the 
same issue of using a high reduction factor compare to cos(x) it could be interesting to 
calculate cos(x) using sin(x): 
 

 cos(𝑥) = ඥ1 − 𝑠𝑖𝑛ଶ(𝑥)       ( 80) 
 
It turns out that this increases the performance by a factor of 2 times the traditional way of 
calculating cos(x) directly and is therefore recommended. There is another alternative to 
using the identity:  cos(𝑥) = sin (

గ

ଶ
− 𝑥). If you have a fast generation π you will experience 

a similar performance as the cos(𝑥) = ඥ1 − 𝑠𝑖𝑛ଶ(𝑥) but in my opinion, it will be safer to 
rely on the faster sqrt(x) function. 
 
Recommendation for calculating cos(x) 
Based on the performance measure of the various cos(x) methods recommend: 
 

 Always use the cyclic and symmetry rules to reduce the x to the range [0. 𝜋]  
 It is unnecessary to reduce it down to the range [0. .

గ

ଶ
] using symmetry avoiding 

another calculation of π. 
 Use the double angle formula for argument reduction instead of the trisection formula. 
 Do not use the Taylor series for cos(x) with an aggressive reductions factor to speed 

up the Taylor term calculation. If you do it anyway then use it with coefficient scaling 
to increase performance. 

 Use cos(𝑥) = ඥ1 − 𝑠𝑖𝑛ଶ(𝑥) is recommended for calculating cos(x) which is two 
times faster than the other cos(x) methods. 

 
Tan(x): 
We could use a Taylor series for tan(x) however since we have an efficient implementation of 
sin(x) it is better to use the identity: 
 

𝑡𝑎𝑛(𝑥) =
ୱ୧୬ (௫)

ඥଵି௦௜ మ(௫)
        ( 81) 

 
However, before we start the calculation we first reduce the argument x so it falls between 0 
and 2π and then call Sin(x) (see above). 
 
Alternatively, we could use the Taylor series for tan(x): 
 

tan(𝑥) = 𝑥 +
௫య

ଷ
+

ଶ௫ఱ

ଵହ
+

ଵ଻௫ఱ

ଷଵହ
+

଺ଶ௫వ

ଶ଼ଷହ
+ ⋯

ଶమ೙൫ଶమ೙ିଵ൯஻೙௫మ೙షభ

(ଶ௡)!
+ ⋯  ( 82) 
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Where Bn is the Bernoulli number. However, since we don’t know how many Bernoulli 
numbers we need this will require it to be calculated on the fly and therefore way more 
complicated to implement than the identity for tan(x) using sin(x). 
 
Arcsin(x): 
We have a few options. Either we can find arcsin (x) using the Newton method or we can do 
it using a Taylor series for arcsin (x). 
 
Arcsin using the Newton method 
To find arcSin(x) it is very popular to resort to a Newton iteration when solving the equation 
arcSin(a)=x  =>  a=sin(x).  
 
Restating the problem as f(a)=sin(x)-a=0 and applying the Newton method we get: 
Where f(x)=sin(x)-a and f’(x)=cos(x). 
 

𝑥௡ାଵ = 𝑥௡ −
ୱ୧୬(௫೙)ି௔

ୡ୭ୱ(௫೙)
        ( 83) 

 
We stop when xn=xn-1 for any given precision of the number. We do not want to calculate 
both sin(x) and cos(x) so we replace cos(x) with the identity: 
 

cos(𝑥) = ඥ1 − 𝑠𝑖𝑛ଶ(𝑥)       ( 84) 
Yields:  

𝑥௡ାଵ = 𝑥௡ −
ୱ୧୬(௫೙)ି௔

ඥଵି௦௜௡మ(௫೙)
       ( 85) 

  
 To speed up the iteration and to ensure convergence we repeatedly reduced the argument x, 
to a small value using the identity: 
 

𝐴𝑟𝑐𝑠𝑖𝑛(𝑥) = 2 ∙ 𝐴𝑟𝑐𝑆𝑖𝑛(
௫

√ଶඥଵା√ଵି௫మ
)     ( 86) 

 
Now the x argument will always per definition between -1≤x≥1, so we will only need a 
maximum of two argument reductions to get below 0.5. 
 
You can obtain k, numbers of reduction by repeatedly doing below recurrence k number of 
times. Set x0=x and k is the number of reductions: 
 

𝑥௞ =
௫ೖషభ

√ଶඨଵାටଵି௫ೖషభ
మ

        ( 87) 

 
Until xm is sufficiently low. Now we can start with an initial guess of arcsin(x) using standard 
IEEE754. This gives us a starting guess for the Newton iteration with a least 15 significant 
digits and the Newton iteration will converge quickly with a convergence rate of 2 meaning 
the number of correct digits doubles per iteration. After we find the new xn we will need to 
multiply the result with 𝑥 = 𝑥௡ ∙  2௞   to reverse the argument reduction we did before the 
Newton iteration. 
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Example 1. ArcSin(x) using the Taylor series 
To see how this algorithm works let us find the arcSin(0.3). After only three iterations the 
error is zero and the result is ~ 0.304693. 
 

ArcSin(x) Newton Original X Reduced 
x=  0.3 0.3 
No Reduction 0  
Iteration x ArcSin(x) Error 

1 0.304689231 0.304689230851802 3.42E-06 
2 0.304692654 0.304692654013555 1.84E-12 
3 0.304692654 0.304692654015398 0.00E+00 

 
Now assuming for a moment we did not do any argument reduction we will see a much 
slower convergence when x get near 1. See below. 
 

ArcSin(x) Newton Original X Reduced 
x=  1 1 
No Reduction 0  
Iteration x ArcSin(x) Error 

1 1.293407993 1.293407993026020 2.77E-01 
2 1.432998367 1.432998366665080 1.38E-01 
3 1.502006577 1.502006576891840 6.88E-02 
4 1.536415021 1.536415021395350 3.44E-02 
5 1.553607368 1.553607367680850 1.72E-02 
6 1.562202059 1.562202058854760 8.59E-03 
7 1.566499219 1.566499219274400 4.30E-03 
8 1.568647776 1.568647776340770 2.15E-03 
9 1.569722052 1.569722051981120 1.07E-03 

10 1.570259189 1.570259189439680 5.37E-04 
11 1.570527758 1.570527758123650 2.69E-04 
12 1.570662042 1.570662042459940 1.34E-04 
13 1.570729185 1.570729184627400 6.71E-05 
14 1.570762756 1.570762755710630 3.36E-05 
15 1.570779541 1.570779541251150 1.68E-05 
16 1.570787934 1.570787934020610 8.39E-06 
17 1.57079213 1.570792130414050 4.20E-06 
18 1.570794229 1.570794228613920 2.10E-06 
19 1.570795278 1.570795277678890 1.05E-06 
20 1.570795802 1.570795802251530 5.25E-07 
21 1.570796064 1.570796064492250 2.62E-07 
22 1.570796196 1.570796195702950 1.31E-07 
23 1.570796261 1.570796260914560 6.59E-08 
24 1.570796295 1.570796294618790 3.22E-08 
25 1.570796312 1.570796311871080 1.49E-08 
26 1.570796319 1.570796319310360 7.48E-09 

 
Even after 26 iterations, we only get a decent result with an error margin of 7.48E-9, while 
with two argument reductions, we have the result with only three iterations.  
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Example 2. ArcSin(x) using Taylor series and argument reduction 
ArcSin(x) Newton Original X Reduced 
x=  1 0.382683432 
No Reduction 2  
Iteration x ArcSin(x) Error 

1 0.392678725 1.570714899985370 2.04E-05 
2 0.392699082 1.570796326451610 8.58E-11 
3 0.392699082 1.570796326794900 0.00E+00 

 
This example demonstrates the benefit of using argument reduction before applying the 
Newton iterations. 
 
Using Newton's iteration gives the result in relatively few iterations however still not very 
fast compared to the direct approach using the Taylor series, see next section. 
 
Arcsin(x) using Taylor series and argument reduction 
Instead of the Newton method, we can use the Taylor Series for arcsin(x) given by: 
 

𝐴𝑟𝑐𝑠𝑖𝑛(𝑥) = 𝑥 +
௫య

ଶ∙ଷ
+

ଷ௫ఱ

ଶ∙ସ∙ହ
+

ଷ∙ହ௫ళ

ଶ∙ସ∙଺∙଻
+

ଷ∙ହ∙଻௫వ

ଶ∙ସ∙଺∙଼∙ଽ
…    ( 88) 

 
This gives us a more direct approach to arcsin(x) and applied together with the dynamic 
argument reductions we see a speed up in the calculation in the range of two. As the precision 
rise, this method will become increasingly faster than the Newton version.  
 
The Taylor series seems a little hard to digest. If we denote the n’th Taylor term, r we can go 
from one Taylor term to the next using the following recurrence: 
 

𝑟ଵ = 𝑥 
 

𝑟௡ = 𝑟௡ିଵ

(2𝑛 − 3)ଶ ∙ 𝑥ଶ

(2𝑛 − 1)(2𝑛 − 2)
 𝑓𝑜𝑟 𝑛 = 2,3, … , 𝑚 

 
 
We calculate the reducing factor, k as 2 ∙ ⌈ln(2) ∗ ln(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)⌉ and adjust the reduction 
factor downwards if x is small to avoid unnecessary reductions.  We should be careful not to 
be too aggressive because of the reduction of identity:  

  
𝐴𝑟𝑐𝑠𝑖𝑛(𝑥) = 2 ∙ 𝐴𝑟𝑐𝑆𝑖𝑛(

௫

√ଶඥଵା√ଵି௫మ
)     ( 89) 

 
Require one division and two square roots (√2 is a constant that can be calculated before the 
reduction), two multiplication, and two addition/subtracting. The benefit of using reduction 
slows down and becomes counterproductive when the reduction factor exceeds 30-40. 
  
Example 3. ArcSin(x) using the Taylor series 
Below is an example of using the Taylor Series for calculating arcSin(x) with x=0.3.  
 

ArcSin(x) Taylor  Original X Reduced  
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x=  0.3 0.3  
No Reduction 0   

Terms Term Value Taylor sum Arcsin(x) Error 
1 3.00E-01    0.300000000000000      0.300000000000000  4.69E-03 
2 4.50E-03    0.304500000000000      0.304500000000000  1.93E-04 
3 1.82E-04    0.304682250000000      0.304682250000000  1.04E-05 
4 9.76E-06    0.304692013392857      0.304692013392857  6.41E-07 
5 5.98E-07    0.304692611400670      0.304692611400670  4.26E-08 
6 3.96E-08    0.304692651032278      0.304692651032278  2.98E-09 
7 2.77E-09    0.304692653798869      0.304692653798869  2.17E-10 
8 2.00E-10    0.304692653999250      0.304692653999250  1.61E-11 
9 1.49E-11    0.304692654014168      0.304692654014168  1.23E-12 

10 1.13E-12    0.304692654015302      0.304692654015302  9.53E-14 
11 8.78E-14    0.304692654015390      0.304692654015390  7.55E-15 
12 6.88E-15    0.304692654015397      0.304692654015397  6.66E-16 

 
After 12 Taylor terms, we have the result with 15-16 decimal digits. If we run it with a 
reduction factor of, two we get: 
 
Example 4. Sin(x) using Taylor series and argument reduction 

ArcSin(x) Taylor  Original X Reduced  
x=  0.3 0.076099521  
No Reduction 2   

Terms Term Value Taylor sum Arcsin(x) Error 
1 7.61E-02    0.076099520968904      0.304398083875615  2.95E-04 
2 7.35E-05    0.076172971428661      0.304691885714644  7.68E-07 
3 1.91E-07    0.076173162841418      0.304692651365671  2.65E-09 
4 6.60E-10    0.076173163501238      0.304692654004951  1.04E-11 
5 2.60E-12    0.076173163503838      0.304692654015353  4.47E-14 
6 1.11E-14    0.076173163503849      0.304692654015397  3.89E-16 

 
The same result is achieved after only six iterations. This again demonstrates that argument 
reduction can reduce the workload significantly. 
 
Arcsin with coefficient scaling 
We have seen that we can gain typically 2-3 times better performance if we implement 
coefficient scaling. If we try to group two Taylor terms to avoid a division, we get from the 
Taylor terms listed above: 
 

𝑟ଵ = 𝑥,    𝑟௡ = 𝑟௡ିଵ

(2𝑛 − 3)ଶ ∙ 𝑥ଶ

(2𝑛 − 1)(2𝑛 − 2)
 𝑓𝑜𝑟 𝑛 = 2,3, … , 𝑚 

 
If we denoted for simplicity  𝑢ଵ = (2𝑛 − 3)ଶ, 𝑙ଵ = (2𝑛 − 1)(2𝑛 − 2) and the following term 
u2 and l2 we get from the above recurrence when grouping two terms together: 
 

𝑇𝑤𝑜 𝑇𝑎𝑦𝑙𝑜𝑟 𝑡𝑒𝑟𝑚𝑠 = 𝑟௡ିଵ

𝑢ଵ ∙ 𝑥ଶ

𝑙ଵ
+ 𝑟௡ିଵ

𝑢ଵ ∙ 𝑥ଶ

𝑙ଵ
∙

𝑢ଶ ∙ 𝑥ଶ

𝑙ଶ
=> 
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𝑟௡ିଵ𝑥ଶ(
𝑢ଵ

𝑙ଵ
+

𝑢ଵ

𝑙ଵ
∙

𝑢ଶ ∙ 𝑥ଶ

𝑙ଶ
) => 

 

𝑟௡ିଵ𝑥ଶ ቆ
𝑢ଵ𝑙ଶ

𝑙ଵ𝑙ଶ
+

𝑢ଵ𝑢ଶ ∙ 𝑥ଶ

𝑙ଵ𝑙ଶ
ቇ => 

 

𝑟௡ିଵ𝑥ଶ(
𝑢ଵ𝑙ଶ + 𝑢ଵ𝑢ଶ ∙ 𝑥ଶ

𝑙ଵ𝑙ଶ
) 

 
The new recurrence for r, grouping two Taylor terms together is given by: 
 

𝑟ଵ = 𝑥,    𝑟௡ାଵ = 𝑟௡ିଵ𝑥ସ
𝑢ଵ𝑢ଶ

𝑙ଵ𝑙ଶ
 

 
Continue one by grouping three Taylor terms together you get. 
 

𝑟௡ିଵ𝑥ଶ(
𝑢ଵ𝑙ଶ𝑙ଷ + 𝑢ଵ𝑢ଶ𝑙ଷ ∙ 𝑥ଶ + 𝑢ଵ𝑢ଶ𝑢ଷ ∙ 𝑥ସ

𝑙ଵ𝑙ଶ𝑙ଷ
) 

 
The new rn+2 is given by: 
 

𝑟ଵ = 𝑥,    𝑟௡ାଶ = 𝑟௡ିଵ𝑥଺
𝑢ଵ𝑢ଶ𝑢ଷ

𝑙ଵ𝑙ଶ𝑙ଷ
 

 
You can continue on this path. In the current implementation, we use a grouping of five 
Taylor terms and scale the coefficients accordingly. 
 
Recommendation for calculating Arcsin(x) 
Based on the performance measure of the various arcsin(x) methods recommend: 
 

 The preferred method is to use the Taylor series for arcsin(), together with argument 
reduction and coefficient scaling. 

 Arcsin() using the Newton method does not perform as well as the Taylor series 
method. The performance issue gets worse with increasing precision. 

 Only use a moderate number of argument reductions since it is very time-consuming 
to calculate. (Involving a division and two square roots calculation). 
 

Arccos(x): 
To find Arccos(x) we used the identity: 
 

𝐴𝑟𝑐𝑐𝑜𝑠(𝑥) =
గ

ଶ
− 𝐴𝑟𝑐𝑠𝑖𝑛(𝑥)       ( 90) 

 
It is not much else you can do. 
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Arctan(x): 
There are two interesting methods to use. One is the standard Taylor series and the other one 
is contributed to Euler which is considered faster than the Taylor series (at least fewer terms 
are needed). 
 
Arctan(x) using the Taylor series 
For arctan(x) we can use a Taylor series until any additional addition does not change the 
result for the given precision of the number:  
 

𝐴𝑟𝑐𝑡𝑎𝑛(𝑥) = 𝑥 −
௫య

ଷ
+

௫ఱ

ହ
−

௫ళ

଻
+

௫వ

ଽ
− ⋯ , 𝑤ℎ𝑒𝑟𝑒 |𝑥| ≤ 1   ( 91) 

 
However, before we start the Taylor series we first need to reduce the argument x to a smaller 
value that will make the Taylor series run faster by using fewer Taylor terms.  We use the 
identity: 
 

   𝐴𝑟𝑐𝑡𝑎𝑛(𝑥) = 2 ∙ arctan (
௫

ଵା√ଵା௫మ
)     ( 92) 

 
k number of times until x is sufficiently low. 
 
This argument reduction is done to reduce the number of Taylor steps and minimize the 
round-off errors and calculation time and of course, ensure that our Taylor series is stable. 
 
We calculate the reducing factor, k as 2 ∙ ⌈ln(2) ∗ ln(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)⌉ and adjust the reduction 
factor downwards if x is small to avoid unnecessary reductions.  We should be careful not to 
be too aggressive because of the reduction of identity:  
 

𝐴𝑟𝑐𝑡𝑎𝑛(𝑥) = 2 ∙ arctan (
௫

ଵା√ଵା௫మ
)      ( 93) 

 
Require one division and one square root, two addition. The benefit of using reduction slows 
down and becomes counterproductive when the reduction factor exceeds 30-40. 
 
After the Taylor series has converged, we multiply the result with 2k to find our result for 
arctan(x). Now looking closer at the argument reduction, you will notice that we never need 
more than one argument reduction to reduce x>1 to x<1. The first reduction will give us a 
max of ±1 since: 
 

lim
௫→ஶ

ቀ
௫

ଵା√ଵା௫మቁ = 1        ( 94) 

 
or 
 

lim
௫→ିஶ

ቀ
௫

ଵା√ଵା௫మቁ = −1       ( 95) 

 
Example 1. ArcTan(x) using the Taylor series 
To see how this algorithm works let us find the arctan(0.3). After the 13th Taylor Terms the 
errors do not get lower and the result is ~ 0.291456794477867. 
 

ArcTan(x) Taylor  Original X Reduced  
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x=  0.3 0.3  
No Reduction 0   

Terms Term Value Taylor sum Arctan(x) Error 
1 3.00E-01       0.300000000000000        0.300000000000000  8.54E-03 
2 9.00E-03       0.291000000000000        0.291000000000000  4.57E-04 
3 4.86E-04       0.291486000000000        0.291486000000000  2.92E-05 
4 3.12E-05       0.291454757142857        0.291454757142857  2.04E-06 
5 2.19E-06       0.291456944142857        0.291456944142857  1.50E-07 
6 1.61E-07       0.291456783100130        0.291456783100130  1.14E-08 
7 1.23E-08       0.291456795364153        0.291456795364153  8.86E-10 
8 9.57E-10       0.291456794407559        0.291456794407559  7.03E-11 
9 7.60E-11       0.291456794483524        0.291456794483524  5.66E-12 

10 6.12E-12       0.291456794477407        0.291456794477407  4.60E-13 
11 4.98E-13       0.291456794477905        0.291456794477905  3.77E-14 
12 4.09E-14       0.291456794477864        0.291456794477864  3.16E-15 
13 3.39E-15       0.291456794477867        0.291456794477867  2.22E-16 

 
Example 2. ArcTan(x) using Taylor series and argument reduction 
Now if we take two-argument reduction we reduced the number of Taylor terms taken. E.g., 
arctan(0.3) gives the result after only six Taylor terms. 
 

ArcTan(x) Taylor  Original X Reduced  
x=  0.3 0.072993423  

No Reduction 2   
Terms Term Value Taylor sum Arctan(x) Error 

1 7.30E-02       0.072993423050513        0.291973692202050  5.17E-04 
2 1.30E-04       0.072863785762585        0.291455143050342  1.65E-06 
3 4.14E-07       0.072864200190164        0.291456800760656  6.28E-09 
4 1.58E-09       0.072864198612959        0.291456794451837  2.60E-11 
5 6.54E-12       0.072864198619495        0.291456794477981  1.13E-13 
6 2.85E-14       0.072864198619467        0.291456794477867  5.55E-16 

 
If we do four argument reductions, we only need four Taylor terms to get the result. As we 
have seen before, argument reduction is crucial to lowering the number of Taylor terms 
needed when precision is increased.  
 
The issue with arbitrary precision for Arctan 
The Number of Taylor terms to reach a result does not seem so bad at a first glance. In the 
previous examples, we were only using approx. 15 decimal digits. However, when we are 
dealing with higher precisions e.g. 1,000 digits, 10,000, or even 100,000 digits we suddenly 
have to perform a lot more Taylor terms to find our result. You can find the approximate 
value for the number of Taylor Terms n by: 
 

 
௫మ೙షభ

ଶ௡ିଵ
< 10ି௉          ( 96) 

 
Where P is the precision in decimal digits and |x| < 1. The terms we dropped are the 2n+1 
terms. Given 
 



The Math behind arbitrary precision 
 

23 February 2023       www.hvks.com/Numerical/arbitrary_precision.html Page 82 
 

    
௫మ೙శభ

ଶ௡ାଵ
= 10ି௉ => 

 
(2𝑛 + 1) ln(𝑥) − ln(2𝑛 + 1) = −𝑃 ∙ ln (10) 

 
-ln(2n+1) is small compare to (2n+1)ln(x) so we drop it and get: 
 
  

(2𝑛 + 1) ln(𝑥) ≈ −𝑃 ∙ ln(10) => 
 

(2𝑛 + 1) ≈
−𝑃 ∙ ln(10)

ln(𝑥)
=> 

 

𝑛 ≈
ି௉∙୪୬(ଵ଴)ି୪୬ (௫)

ଶ∙୪୬(௫)
        ( 97) 

 
Now if we use x=10M where M is the magnitude of the number we can further simplify it: 
 

𝑛 ≈
ି௉ିெ

ଶ∙ெ
         ( 98) 

 
The number of Taylor terms needed for arctan(x) as a function of precision and argument 
magnitude. 
 
Digits 101 102 103 104 105 106 107 108 
x         
10-1 5 50 500 5,000 50,000 500,000 5,000,000 50,000,000 

10-2 2 25 250 2,500 25,000 250,000 2,500,000 25,000,000 

10-3 1 16 166 1,666 16,666 166,666 1,666,666 16,666,666 

10-4 1 12 125 1,250 12,500 125,000 1,250,000 12,500,000 

10-5 1 10 100 1,000 10,000 100,000 1,000,000 10,000,000 

10-6 0 8 83 833 8,333 83,333 833,333 8,333,333 

10-7 0 7 71 714 7,142 71,428 714,285 7,142,857 

10-8 0 6 62 625 6,250 62,500 625,000 6,250,000 

10-9 0 5 55 555 5,555 55,555 555,555 5,555,555 

This table indicates the usefulness of argument reduction. 
 
The table above is quite interesting. E.g., the effect of argument reduction for a precision of 
100 digits reduces the number of Taylor terms by a factor of six between arguments of -1 in 
magnitude down to an argument of 10-9 in magnitude is around a factor of 10 times fewer 
Taylor Terms. However overall argument reduction is beneficial at any precision.  
 
Arctan(x) using coefficient scaling 
We have seen that we can gain typically 2-3 times better performance if we implement 
coefficient scaling. If we try to group two Taylor terms to avoid a division, we get from the 
Taylor series for arctan where n denoted the n’th Taylor term for arctan if term n is even we 
start with a minus sign otherwise +, and then we alternate the sign for each Taylor term going 
forward: 
 



The Math behind arbitrary precision 
 

23 February 2023       www.hvks.com/Numerical/arbitrary_precision.html Page 83 
 

𝑇𝑤𝑜 𝑇𝑎𝑦𝑙𝑜𝑟 𝑡𝑒𝑟𝑚𝑠: −
𝑥௡ିଵ

2𝑛 − 1
+

𝑥௡ାଵ

2𝑛 + 1
=> 

 

−
(2𝑛 + 1)𝑥௡ିଵ + (2𝑛 − 1)𝑥௡ାଵ

(2𝑛 − 1)(2𝑛 + 1)
=> 

 

𝑥௡ିଵ ∙
−(2𝑛 + 1) + (2𝑛 − 1)𝑥ଶ

(2𝑛 − 1)(2𝑛 + 1)
 

 
If we group three Taylor terms, we get: 
 

𝑥௡ିଵ ∙
−(2𝑛 + 1)(2𝑛 + 3) + (2𝑛 − 1)(2𝑛 + 3)𝑥ଶ − (2𝑛 − 1)(2𝑛 + 1)𝑥ସ

(2𝑛 − 1)(2𝑛 + 1)(2𝑛 + 3)
 

 
We can continue grouping Taylor terms. From a practical point of view, grouping five Taylor 
terms together is a reasonable amount as it will double the performance compared to not 
doing it. 
 
Arctan(x) using the Euler method 
Euler devised another series for arctan that supposedly converges more quickly than the 
Taylor series.  The series can be expressed (alternatively) as: 
 

𝐴𝑟𝑐𝑡𝑎𝑛(𝑥) = ∑
ଶమ೙(௡!)మ

(ଶ௡ାଵ)!

௭మ೙శభ

(ଵା௫మ)೙శభ
ஶ
௡ୀ଴       ( 99) 

 
For x>0.4 required fewer Terms than the equivalent Taylor series, e.g. arctan(0.6) requires 25 
terms to get the result. While using the Taylor series requires 30 Taylor terms. As x 
increased, get worse. However, for x<0.4 the Taylor series and the Euler series require 
approximately the same number of terms.  
 
Example 1. ArcTan(x) using Euler’s method 

ArcTan(x) Euler Original X Reduced  
x=  0.6 0.6  

No Reduction  0   
Terms Term Value Euler sum Arctan(x) Error 

1 4.41E-01       0.441176470588235        0.441176470588235  9.92E-02 
2 7.79E-02       0.519031141868512        0.519031141868512  2.14E-02 
3 1.65E-02       0.535518013433747        0.535518013433747  4.90E-03 
4 3.74E-03       0.539258732192246        0.539258732192246  1.16E-03 
5 8.80E-04       0.540138901311893        0.540138901311893  2.81E-04 
6 2.12E-04       0.540350706715016        0.540350706715016  6.88E-05 
7 5.18E-05       0.540402460071436        0.540402460071436  1.70E-05 
8 1.28E-05       0.540415246194786        0.540415246194786  4.25E-06 
9 3.19E-06       0.540418431664964        0.540418431664964  1.07E-06 

10 7.99E-07       0.540419230498042        0.540419230498042  2.70E-07 
11 2.01E-07       0.540419431884533        0.540419431884533  6.84E-08 
12 5.10E-08       0.540419482874974        0.540419482874974  1.74E-08 
13 1.30E-08       0.540419495832545        0.540419495832545  4.44E-09 
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14 3.30E-09       0.540419499135455        0.540419499135455  1.14E-09 
15 8.44E-10       0.540419499979607        0.540419499979607  2.91E-10 
16 2.16E-10       0.540419500195850        0.540419500195850  7.47E-11 
17 5.55E-11       0.540419500251357        0.540419500251357  1.92E-11 
18 1.43E-11       0.540419500265630        0.540419500265630  4.95E-12 
19 3.68E-12       0.540419500269306        0.540419500269306  1.28E-12 
20 9.48E-13       0.540419500270254        0.540419500270254  3.30E-13 
21 2.45E-13       0.540419500270499        0.540419500270499  8.54E-14 
22 6.33E-14       0.540419500270562        0.540419500270562  2.21E-14 
23 1.64E-14       0.540419500270579        0.540419500270579  5.66E-15 
24 4.24E-15       0.540419500270583        0.540419500270583  1.44E-15 
25 1.10E-15       0.540419500270584        0.540419500270584  3.33E-16 

 
Example 2. ArcTan(x) using Euler’s method and argument reduction 
As with the Taylor series using argument reduction greatly reduced the number of terms 
needed. E.g. arctan(0.6) using a reduction factor of four requires only 5 terms (same as for the 
Taylor series). 
 

ArcTan(x) Euler Original X Reduced  
x=  0.6 0.033789069  

No Reduction  4   
Terms Term Value Euler sum Arctan(x) Error 

1 3.38E-02       0.033750535945282        0.540008575124517  4.11E-04 
2 2.57E-05       0.033776195334449        0.540419125351177  3.75E-07 
3 2.34E-08       0.033776218744006        0.540419499904093  3.66E-10 
4 2.29E-11       0.033776218766888        0.540419500270213  3.71E-13 
5 2.32E-14       0.033776218766912        0.540419500270584  3.33E-16 

 
Another drawback is that each Euler term requires more computational power than the 
corresponding Taylor series. Overall it is not worth using the Euler version of arctan(x) over 
the Taylor series version. 
 
Arctan(x) using Arcsin() 
It could be interesting to use the identity: 
 

𝐴𝑟𝑐𝑡𝑎𝑛(𝑥) = Arcsin (
௫

√ଵା௫మ
)       ( 100) 

 
Particularly if you want to reduce the size of your code and reuse existing code for arcsin(). 
However, the performance is slightly slower (20%-30%) than using the Taylor series for 
arctan().  
 
Recommendation for calculating Arctan(x) 
Based on the performance measure of the various arctan(x) methods recommend: 
 

 The preferred method is to use the Taylor series for arctan(x), together with argument 
reduction and coefficient scaling. 

 Arctan(x) using the Euler series has no advantages over the Taylor series for 
argument < 0.4. For argument x>0.4, it is more beneficial to stick with the Taylor 
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series and use the recommended argument reduction and coefficient scaling for 
increased performance. 

 Arctan(x) using arcsin(x) is an alternative that is slower but can be used to simplify 
and reduce code size. 

 Only use a moderate number of argument reductions since it is very time-consuming 
to calculate. (Involving a division and a square root calculation). 
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Hyperbolic functions: 
 
Usually, you use a Taylor series to calculate the Hyperbolic functions for sinh(x) and cosh(x) 
and some simple hyperbolic identity to calculate tanh(x), arcsinh(x), arccosh(x), and 
arctanh(x). This chapter will examine: 
 

 Sinh(x) using exp(x) 
 Sinh(x) using Taylor series, argument reduction, and coefficient scaling. 
 Cosh(x) using Taylor series, argument reduction, and coefficient scaling. 
 Tanh(x) using a simple identity. 
 Arcsinh(x) using a simple identity. 
 Arccosh(x) using a simple identity. 
 Arctanh(x) using a simple identity. 

   
The most common one for arbitrary precision libraries is the standard Taylor series expansion 
method.  
 
Sinh(x) using Exp(x) 
It is tempting to use the definition of sinh(x): 
 

sinh(x) =
ଵ

ଶ
(e୶ − eି୶) =

ଵ

ଶ
ቀe୶ −

ଵ

ୣ౮ቁ     ( 101) 

 
Were we only need to calculate ex once. Particularly if you have a fast implementation of ex, 
you can use the above to calculate sinh(x) and save some code. However, recall ref [9] where 
the recommended method for calculating ex is to use the sine hyperbolic function: 
 

exp(x) = sinh(x) + ඥ1 + sinh (x)ଶ      ( 102) 
 
If you have implemented the above method for exp(x) then you will experience a little bit 
slower performance using exp(x) to calculate sinh(x).  Usually, sinh(x) is faster to calculate 
than exp(x). 
 
Sinh(x) using the Taylor series 
We have already seen that using the sinh(x) Taylor series for calculating ex is faster than the 
ex using the Taylor series. See ref [9]. We will repeat the finding from ref [9] below. 
 
Sinh(x) is found with the Taylor series: 
 

sinh(x) = x +
୶య

ଷ!
+

୶ఱ

ହ!
+

୶ళ

଻!
+

୶వ

ଽ!
…      ( 103) 

 
Example sinh(1): 
Calculating sinh(1) using no argument reduction. We need seven Taylor terms to get the 
result using the Taylor series. 
 

Sinh(x)  Original X Reduced  
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x=  1 1  
Taylor reductions= 0   

Terms Term value Term Sum Sinh(x) Error 
1 1.00E+00 1.00000000000 1.0000000000 1.75E-01 
2 1.67E-01 1.16666666667 1.1666666667 8.53E-03 
3 8.33E-03 1.17500000000 1.1750000000 2.01E-04 
4 1.98E-04 1.17519841270 1.1751984127 2.78E-06 
5 2.76E-06 1.17520116843 1.1752011684 2.52E-08 
6 2.51E-08 1.17520119348 1.1752011935 1.61E-10 
7 1.61E-10 1.17520119364 1.1752011936 7.67E-13 

 
  
The issue with arbitrary precision for sinh(x) 
The number of Taylor terms to reach a result does not seem too bad at a first glance. In the 
previous examples, we were only using approx. 15 decimal digits. However, when we are 
dealing with higher precisions e.g. 1,000 digits, 10,000, or even 100,000 digits we suddenly 
have to perform a lot more Taylor terms to find our result. In Yaca's book of algorithms [5] 
they found a bound for the number of Taylor terms, n needed for the sin(x) as a function of 
the number of precision in digits P and the magnitude, M of the argument x=10M. You can 
use the same rationale as they used for sin(x) to get a bound for the number of Taylor terms 
for sinh(x):  
 

2(n + 1) ≈
(P − M) ∙ ln(10)

ln(P − M) − 1 − M ∙ ln(10)
=> 

 

n ≈
ଵ

ଶ

(୔ି୑)∙୪୬(ଵ଴)

୪୬(୔ି୑)ିଵି୑∙୪୬(ଵ଴)
− 1      ( 104) 

 
 
The number of Taylor terms needed for sinh(x) as a function of precision and argument 
magnitude. 
 

Digits 101 102 103 104 105 106 107 108 
x 

        

101 (11) 88 319 1,948 14,022 109,512 898,358 7,615,327 

100 8 31 194 1,402 10,951 89,835 761,532 6,608,768 

10-1 3 19 140 1,095 8,983 76,153 660,876 5,837,230 

10-2 2 14 109 898 7,615 66,087 583,723 5,227,006 

10-3 1 11 90 761 6,608 58,372 522,700 4,732,291 

10-4 1 9 76 661 5,837 52,270 473,229 4,323,125 

10-5 1 7 66 584 5,227 47,323 432,312 3,979,084 

10-6 1 6 58 522 4,732 43,231 397,908 3,685,765 

10-7 1 6 52 473 4,323 39,791 368,576 3,432,721 

10-8 1 5 47 432 3,979 36,857 343,272 3,212,190 

10-9 (1) 5 43 398 3,686 34,327 321,219 3,018,284 

 
The table above is quite interesting. E.g., the effect of argument reduction for a precision of 
100 digits reduces the number of Taylor terms by a factor of six between arguments of 1 in 
magnitude down to an argument of 10-9 in magnitude. For a precision of 100,000 digits, the 
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factor is only around three and for 100M digits, it is around 2.2. The lesson here is that 
argument reduction is more efficient for smaller precision than for higher precision. However 
overall argument reduction is beneficial at any precision. There is another approximation for 
n based on the actual value of x not just the magnitude.  It usually gives a little bit less 
amount of needed Taylor terms. This formula can be quite useful: 
 

n ≈
୔∙୪୬(ଵ଴)

ଶ(୪୬(୔)ି୪  (୶))
− 1        ( 105) 

 
Argument Reduction for sinh(x) 
It is clear looking at the Taylor series for sinh(x) that we prefer to have our |x| < 1 to ensure 
that the Taylor series converge more quickly. As we have seen before we can use argument 
reduction to work with a smaller number to get a faster converging of sinh(x) using fewer 
Taylor terms of the Taylor series.  
 
We can use the trisection identity: sinh(3𝑥) = sinh(x)(3 + 4𝑠𝑖𝑛ℎଶ(x)) to reduce the 
argument with a factor of three and then after the Taylor iterations we restore and find the 
correct value for sinh(x) by applying this formula the same number of times we did when 
reducing the argument. 
 
Example – Two-argument reduction: 
Using the same example as before for sinh(1) and using two argument reductions, you get the 
result after only four Taylor terms compare to seven with no argument reductions. 
 

Sinh(x)  Original X Reduced  
x=  1 0.111111111  
Taylor reductions= 2   

Terms Term value Term Sum Sinh(x) Error 
1 1.11E-01 0.11111111111 1.1720460995 3.16E-03 
2 2.29E-04 0.11133973480 1.1751992452 1.95E-06 
3 1.41E-07 0.11133987592 1.1752011931 5.73E-10 
4 4.15E-11 0.11133987596 1.1752011936 9.84E-14 

 
 
Example – Eight-argument reductions: 
With 8 times argument reduction, you get the result after two Taylor terms compare to four 
using two argument reductions. 
 

Sinh(x)  Original X Reduced  
x=  1 0.000152416  
Taylor reductions= 8   

Terms Term value Term Sum Sinh(x) Error 
1 1.52E-04 0.00015241579 1.1752011877 5.97E-09 
2 5.90E-13 0.00015241579 1.1752011936 0.00E+00 

 
 
As of no surprise, using argument reduction greatly reduced the number of Taylor terms 
needed and will result in faster performance.  
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Finding a reasonable argument reductions factor for sinh(x) 
As can be seen in the above table a higher reduction factor greatly improved the performance. 
However, how many times reduction is adequate? The argument reduction on the front end is 
a division per reduction. In the back end, you do this as many times as you did the reductions 
on the front end.  Sinh(3x)=3Sinh(x)-4(sinh3(x)) taking sinh(x) out as a factor you get this: 
Sinh(3x)=Sinh(x)(3-4(sinh2(x))) or one subtraction and three multiplication. Using  

 

n ≈
୔∙୪୬(ଵ଴)

ଶ(୪୬(୔)ି୪୬ (୶))
− 1        ( 106) 

 
At a starting point of x=1, you get for P=1,00digits that the needed Taylor terms are 24. 
Doing three reductions you get x=1/33 = 0.037. Using the above formula we expect we would 
only need 14 Taylor terms. Each Taylor term requires one addition/subtraction, 1 division, 
and one multiplication which yields a total saving of 10 subtraction, 10 division, and 10 
multiplication. Compared to three reductions on the front-end is three divisions and on the 
backend 3 subtraction and nine multiplication a total saving of seven subtraction/addition, 
one multiplication, and seven division. Since division is a magnitude slower than 
multiplication and addition/subtraction, we can give a rough saving equivalent with seven 
divisions. For higher precisions, the saving becomes larger.  
  

We automatically calculate the reduction factor as 𝑘 = 8 ቒ
ଶ

ଷ
ln(2) ∗ ln (𝑃)ቓ  for higher 

precisions, and then we adjusted the magnitude of x. We add the exponent to the reduction 
factor. If x is large then we do more argument reductions and if x is small, we reduced the 
number of reductions. This has the effect that our reduction factor gets smaller if x is very 
small preventing us from doing unnecessary reductions. If x is very small, the reduction 
factor is negative and we simply do not perform any argument reductions at all. E.g. for 
P=100 you get 24 and for P=10,000 you get 40. To compensate for the inaccuracy when 
adding the front and back end calculation, we increase the precision by the reduction factor, 
k/4. The increased precision only generates a small performance penalty compared to the 
extra saving in Taylor's terms of the overall calculation.  
  
Now to calculate a reasonable reductions factor we make it a function of the wanted precision 
and the magnitude of the argument x. E.g. argument reduction increased as a log function of 
the wanted precision and argument reduction increased with a large magnitude of the number 
and decreased for a smaller magnitude of the argument x.  
 
Guard Digits for sinh(x) 
When summarizing a Taylor series as sinh(x) you need quite a lot of summarizing and that 
will produce round-off errors.  
 
For our sinh(x) function, we use a simple guard digits calculation that we add  
 

 2+ceil(log10(precision)) as extra guard digits as the working precision. 
 
 
Further improvements of the method for sinh(x)? 
The same technique for coefficient scaling (grouping of Taylor terms) can be applied here as 
well. Consider the Taylor series for sine hyperbolic: 
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sinh(𝑥) = 𝑥 +
௫య

ଷ!
+

௫ఱ

ହ!
+

௫ళ

଻!
+

௫వ

ଽ!
…      ( 107) 

 
The issue again clearly is the division for each term. Since division is many times slower than 
calculation and addition. You could group two or more Taylor terms (sometimes referred to 
as coefficient scaling) and reduce the number of divisions. Consider the n’th and the n+1 
term: 
  

…
𝑥௡

𝑛!
+

𝑥௡ାଶ

(𝑛 + 2)!
… 

Moreover, group them: 
 

…
(𝑛 + 1)(𝑛 + 2)𝑥௡

(𝑛 + 1)(𝑛 + 2)𝑛!
+

𝑥௡ାଶ

(𝑛 + 2)!
… => 

 

…
(𝑛 + 1)(𝑛 + 2)𝑥௡ + 𝑥௡ାଶ

(𝑛 + 2)!
… 

 
Then you have replaced one division with two extra multiplication. The (n+1)(n+2) can be 
done using 64-bit integer arithmetic since you never get to do so many Taylor terms in real 
life that it will overflow. There is no need to stop at just grouping two terms together you can 
do that for three terms: 
 
For grouping three Taylor terms, you get: 
 

…
(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)𝑥௡ + (𝑛 + 3)(𝑛 + 4)𝑥௡ାଶ + 𝑥௡ାସ

(𝑛 + 4)!
… => 

 

…
(𝑛 + 3)(𝑛 + 4)( (𝑛 + 1)(𝑛 + 2)𝑥௡ + 𝑥௡ାଶ) + 𝑥௡ାସ

(𝑛 + 4)!
… 

 
Alternatively, even higher.  
 
Recommendation for calculating sinh(x) 
Based on the performance measure of the various sinh(x) methods recommend: 
 

 Use standard Taylor series for sinh(x)  
 Use an aggressive reductions factor to speed up the Taylor terms calculation. 
 Use coefficient scaling to increase performance.  

 
Cosh(x) using Exp(x) 
It is tempting to use the definition of cosh(x): 
 

cosh(x) =
ଵ

ଶ
(e୶ + eି୶) =

ଵ

ଶ
ቀe୶ +

ଵ

ୣ౮ቁ     ( 108) 
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Were only need to calculate ex once. Particularly if you have a fast implementation of ex, you 
can use the above to calculate cosh(x) and save some code. However, the Taylor series for 
cosh(x) is faster to calculate than using the Taylor series for exp(x).  
 
Cosh(x) using the Taylor series 
For cosh(x), we again use a Taylor series until any additional addition does not change the 
result for the given precision of the number. 
 

cos h(x) = 1 +
୶మ

ଶ!
+

୶ర

ସ!
+

୶ల

଺!
+

୶ఴ

଼!
… for any real value x   ( 109) 

 
Example cosh(1): 
Calculating cosh(1) using no argument reduction. We need nine Taylor terms to get the result 
using the Taylor series. 
 

Cosh(x)  Original X Reduced  
x=  1 1  

Taylor reductions=  0   
Terms Term value Taylor sum Cosh(x) Error 

1 1.00E+00 1     1.00000000000000  5.43E-01 
2 5.00E-01 1.5     1.50000000000000  4.31E-02 
3 4.17E-02 1.54166667     1.54166666666667  1.41E-03 
4 1.39E-03 1.54305556     1.54305555555556  2.51E-05 
5 2.48E-05 1.54308036     1.54308035714286  2.78E-07 
6 2.76E-07 1.54308063     1.54308063271605  2.10E-09 
7 2.09E-09 1.54308063     1.54308063480373  1.15E-11 
8 1.15E-11 1.54308063     1.54308063481520  4.77E-14 
9 4.78E-14 1.54308063     1.54308063481524  0.00E+00 

 
The vast majority of the issues arising in arbitrary precision for sinh(x) also apply to cosh(x). 
  
Argument Reduction for cosh(x) 
It is clear looking at the Taylor series for cosh(x) that we prefer to have our |x| < 1 to ensure 
that the Taylor series converge more quickly. As we have seen before we can use argument 
reduction to work with a smaller number to get a faster converging of cosh(x) using fewer 
Taylor terms of the Taylor series.  
 
We can use the trisection identity: cosh(3𝑥) = cosh(x)(4𝑐𝑜𝑠ℎଶ(x) − 3) to reduce the 
argument with a factor of three and then after the Taylor iterations we restore and find the 
correct value for cosh(x) by applying this formula the same number of times we did when 
reducing the argument. 
 
Example – Two-argument reduction: 
Using the same example as before for cosh(1) and using two argument reductions, you get the 
result after only five Taylor terms compare to nine with no argument reductions. 
 

Cosh(x)  Original X Reduced  
x=  1 0.111111111  

Taylor reductions=  2   
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Terms Term value Taylor sum Cosh(x) Error 
1 1.00E+00 1     1.00000000000000  5.43E-01 
2 6.17E-03 1.00617284     1.54247714909996  6.03E-04 
3 6.35E-06 1.00617919     1.54308038649498  2.48E-07 
4 2.61E-09 1.00617919     1.54308063476051  5.47E-11 
5 5.76E-13 1.00617919     1.54308063481524  2.00E-15 

 
Example – Eight-argument reductions: 
With 8 times argument reduction, you get the result after two Taylor terms compare to five 
using two argument reductions. However, the error is considerably higher (less accurate) than 
the equivalent calculation for sinh(1). 
 

Cosh(x)  Original X Reduced  
x=  1 0.000152416  

Taylor reductions=  8   
Terms Term value Taylor sum Cosh(x) Error 

1 1.00E+00 1     1.00000000000000  5.43E-01 
2 1.16E-08 1.00000001     1.54308063305537  1.76E-09 

 
As of no surprise, using argument reduction greatly reduced the number of Taylor terms 
needed and will result in faster performance.  However aggressive reductions of argument 
result in a significant reduction in accuracy. This is due to the trisection identity and the 
Taylor sum is approaching one for a very small argument resulting in a higher loss of 
accuracy unless you take precautions.  To avoid inaccuracy in the result we increase the 
precision with the reduction, k (instead of k/4 as for sinh(x)). 
 
Cosh(x) using double angle reduction 
Argument reduction reduces x to a much smaller value that is much more sensitive to round-
off errors for cosh(x) than its counterpart for sinh(x). It is therefore potentially better to use 
the double-angle formula: 
 

  cosh(2x) = coshଶ(x) − 1      ( 110) 
 
Alternatively, even better written as:  
  

  cosh(2x) = 2(1 − cosh(x))ଶ − 4(1 − cosh(x)) + 1  ( 111) 
 
Although it does not prevent round-off errors it is less sensitive that the trisection formula. 
We calculate the reduction factor for cosh(x) as 𝑘 = 8⌈ln(2) ∗ ln (𝑃)⌉  for higher precisions, 
and then we adjusted the magnitude of x. We add the exponent to the reduction factor. This 
has the effect that our reduction factor gets smaller if x is very small preventing us from 
doing unnecessary reductions. If x is very small, the reduction factor is negative and we 
simply do not perform any argument reductions at all. 
Since we are a little bit less sensitive using the double angle formula versus the trisection 

formula we only increase the precision with  
ଷ

ସ
𝑘.  

 
The performance is similar to the cosh(x) using the trisection as a reduction factor. Although 
you can use a little bit less precision it does not change the performance observed compared 
to the trisection formula of cosh(x). 
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Recommendation for calculating cosh(x) 
Based on the performance measure of the various cosh(x) methods recommend: 
 

 It is a matter of taste if you should use the cosh(x) using double-angle formula or 
trisection formula since the performance is equivalent. 

 Do not use the Taylor series for cosh(x) with to aggressive reductions factor to speed 
up the Taylor term calculation. 

 Also, use coefficient scaling to increase performance 
 
Tanh(x) 
Tanh(x) is defined as: 
 

tanh(x) =
ୣ౮ିୣష౮

ୣ౮ାୣష౮ =
ୣమ౮ିଵ

ୣమ౮ାଵ
        ( 112) 

 
Which seems to be the most effective way of calculating tanh(x) using one call for exp(x). 
 
We could also use the Taylor series for tanh(x): 
 

tanh(x) = x −
୶య

ଷ
+

ଶ୶ఱ

ଵହ
−

ଵ଻୶ళ

ଷଵହ
+ ⋯

(ିଵ)౤షభ∙ଶమ౤൫ଶమ౤ିଵ൯ஒ౤୶మ౤షభ

(ଶ୬)!
+ ⋯  ( 113) 

 
Where Bn is the Bernoulli number. However, since we do not know how many Bernoulli 
numbers we need this will require us to calculate Bernoulli numbers on the fly and therefore 
much more complicated to implement than just a call to the e2x function. 
 
Recommendation for calculating tanh(x) 
Based on the performance measure of the various tanh(x) methods recommend: 
 

 Use the definition of tanh(x) using exp(x) in favor of using the Taylor series for 
tanh(x). 

 
Arcsinh(x) 
There are two methods. The direct method or the method using the Taylor series. 
 
Arcsinh(x) direct method 
Arcsinh(x) is equal to: 
 

  Arcsinh(x) = ln൫x + √xଶ + 1൯      ( 114) 
 
Ln(x) is relatively fast to calculate and the same goes for the square root.  This direct method 
is the preferred way of calculating Arcsinh(x). 
 
Arcsinh(x) using the Taylor series 
Arcsinh(x) also has a Taylor series equivalence based on two Taylor series. This first Taylor 
series is for |x| < 1: 
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 Arcsinh(x) = x −
ଵ

ଶ

୶య

ଷ
+

ଵ∙ଷ

ଶ∙ସ

୶ఱ

ହ
−

ଵ∙ଷ∙ହ

ଶ∙ସ∙଺

୶ళ

଻
+

ଵ∙ଷ∙ହ∙଻

ଶ∙ସ∙଺∙଼

୶వ

ଽ
− ⋯   ( 115) 

 
The second Taylor series is for |x|>=1: 
 

Arcsinh(x) = ± ln(2x) +
ଵ

ଶ

ଵ

ଶ୶మ −
ଵ∙ଷ

ଶ∙ସ

ଵ

ସ୶ర +
ଵ∙ଷ∙ହ

ଶ∙ସ∙଺

ଵ

଺୶ల −
ଵ∙ଷ∙ହ∙଻

ଶ∙ସ∙଺∙଼

ଵ

଼୶ఴ − ⋯  ( 116) 

 
Where the + applies for x>=1 and – for x<=-1. 
 
Example: Arcsinh(0.1) 
A result is found using only seven Taylor terms 

ArcSinh(x)  Original  |x|<1 

 x= 0.1   
Terms Term value Term Sum ArcSinh(x) Error 

1 1.00E-01 0.1000000000000 0.100000000000000 -1.66E-04 
2 1.67E-04 0.0998333333333 0.099833333333333 7.46E-07 
3 7.50E-07 0.0998340833333 0.099834083333333 -4.43E-09 
4 4.46E-09 0.0998340788690 0.099834078869048 3.02E-11 
5 3.04E-11 0.0998340788994 0.099834078899430 -2.22E-13 
6 2.24E-13 0.0998340788992 0.099834078899206 1.73E-15 
7 1.74E-15 0.0998340788992 0.099834078899208 0.00E+00 

 
Example: Arcsinh(0.7)  
A result is found after 27 Taylor Terms, but the result is not very accurate (error ~10-12) 

ArcSinh(x)  Original  |x|<1 

 x= 0.7   
Terms Term value Term Sum ArcSinh(x) Error 

1 7.00E-01 0.7000000000000 0.700000000000000 -4.73E-02 
2 5.72E-02 0.6428333333333 0.642833333333333 9.83E-03 
3 1.26E-02 0.6554385833333 0.655438583333333 -2.77E-03 
4 3.68E-03 0.6517620520833 0.651762052083333 9.05E-04 
5 1.23E-03 0.6529880731293 0.652988073129340 -3.22E-04 
6 4.42E-04 0.6525457024446 0.652545702444649 1.21E-04 
7 1.68E-04 0.6527138316619 0.652713831661927 -4.73E-05 
8 6.63E-05 0.6526475327072 0.652647532707247 1.90E-05 
9 2.69E-05 0.6526744057210 0.652674405721047 -7.84E-06 

10 1.11E-05 0.6526632785647 0.652663278564660 3.29E-06 
11 4.69E-06 0.6526679649520 0.652667964952025 -1.40E-06 
12 2.00E-06 0.6526659636053 0.652665963605294 6.02E-07 
13 8.65E-07 0.6526668282204 0.652666828220438 -2.62E-07 
14 3.77E-07 0.6526664510290 0.652666451029002 1.15E-07 
15 1.66E-07 0.6526666169607 0.652666616960717 -5.09E-08 
16 7.35E-08 0.6526665434351 0.652666543435125 2.26E-08 
17 3.28E-08 0.6526665762216 0.652666576221552 -1.01E-08 
18 1.47E-08 0.6526665615197 0.652666561519732 4.56E-09 
19 6.63E-09 0.6526665681449 0.652666568144933 -2.06E-09 
20 3.00E-09 0.6526665651461 0.652666565146113 9.36E-10 
21 1.36E-09 0.6526665665089 0.652666566508912 -4.27E-10 
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22 6.22E-10 0.6526665658874 0.652666565887360 1.95E-10 
23 2.84E-10 0.6526665661718 0.652666566171770 -8.94E-11 
24 1.31E-10 0.6526665660412 0.652666566041240 4.11E-11 
25 6.01E-11 0.6526665661013 0.652666566101311 -1.90E-11 
26 2.77E-11 0.6526665660736 0.652666566073596 8.76E-12 
27 1.28E-11 0.6526665660864 0.652666566086412 -4.06E-12 

 
 
There are several issues with the Taylor series approach. 
  

 First, the Taylor series convergence slowly when x is approaching one from either 
side.   

 Secondly, you need to calculate the ln(2x) which takes approximately the same 
amount of time as the direct method.  

 Thirdly, you cannot overcome the issue of slow convergence since there is no 
argument reduction available (the technique we use to speed up the Taylor series). 

 Lastly, it is several magnitudes slower than the direct method. 
 

 
Therefore, the Taylor series approach method is not recommended. 
 
Recommendation for calculating Arcsinh(x) 
Based on the performance measure of the various arcsinh(x) methods recommend: 
 

 Use the Direct method: Arcsinh(x) = ln൫x + √xଶ + 1൯ 
 
 

Arccosh(x) 
Again, there are two methods. The direct method or the method using the Taylor series. 
 
Arccosh(x) direct method 
Arccosh(x) is equal to: 
 

  Arccosh(x) = ln൫x + √xଶ − 1൯,   where x ≥ 1    ( 117) 
 
Ln(x) is relatively fast to calculate and the same goes for the square root.  This direct method 
is the preferred way of calculating Arccosh(x). 
. 
Arccosh(x) using the Taylor series 
Arccosh(x) also have a Taylor series equivalence for |x|>=1: 
 

Arccosh(x) = ln(2x) − (
ଵ

ଶ

ଵ

ଶ୶మ +
ଵ∙ଷ

ଶ∙ସ

ଵ

ସ୶ర +
ଵ∙ଷ∙ହ

ଶ∙ସ∙଺

ଵ

଺୶ల +
ଵ∙ଷ∙ହ∙଻

ଶ∙ସ∙଺∙଼

ଵ

଼୶ఴ − ⋯ ) ( 118) 

 
However, it converges just as slowly as the Arcsinh(x).  
 
Example: Arccosh(5) with argument reduction 
A result is found using nine Taylor terms. 

ArcCosh(x) Original  x>=1 



The Math behind arbitrary precision 
 

23 February 2023       www.hvks.com/Numerical/arbitrary_precision.html Page 96 
 

 x= 5   
Terms Term value Term Sum ArcCosh(x) Error 

1 2.30E+00     2.30258509299405      2.30258509299405  -1.02E-02 
2 1.00E-02     2.29258509299405      2.29258509299405  -1.53E-04 
3 1.50E-04     2.29243509299405      2.29243509299405  -3.42E-06 
4 3.33E-06     2.29243175966071      2.29243175966071  -9.01E-08 
5 8.75E-08     2.29243167216071      2.29243167216071  -2.60E-09 
6 2.52E-09     2.29243166964071      2.29243166964071  -7.95E-11 
7 7.70E-11     2.29243166956371      2.29243166956371  -2.53E-12 
8 2.45E-12     2.29243166956126      2.29243166956126  -8.30E-14 
9 8.04E-14     2.29243166956118      2.29243166956118  0.00E+00 

 
Example: Arccosh(2) with argument reduction 
A result is found using twenty-one Taylor terms 

ArcCosh(x) Original  x>=1 

 x= 2   
Terms Term value Term Sum ArcCosh(x) Error 

1 1.39E+00     1.38629436111989      1.38629436111989  -6.93E-02 
2 6.25E-02     1.32379436111989      1.32379436111989  -6.84E-03 
3 5.86E-03     1.31793498611989      1.31793498611989  -9.77E-04 
4 8.14E-04     1.31712118403656      1.31712118403656  -1.63E-04 
5 1.34E-04     1.31698766963226      1.31698766963226  -2.98E-05 
6 2.40E-05     1.31696363703949      1.31696363703949  -5.74E-06 
7 4.59E-06     1.31695904748184      1.31695904748184  -1.15E-06 
8 9.13E-07     1.31695813425353      1.31695813425353  -2.37E-07 
9 1.87E-07     1.31695794697038      1.31695794697038  -5.00E-08 

10 3.93E-08     1.31695790766404      1.31695790766404  -1.07E-08 
11 8.40E-09     1.31695789926231      1.31695789926231  -2.34E-09 
12 1.82E-09     1.31695789743962      1.31695789743962  -5.15E-10 
13 4.00E-10     1.31695789703933      1.31695789703933  -1.15E-10 
14 8.88E-11     1.31695789695050      1.31695789695050  -2.57E-11 
15 1.99E-11     1.31695789693062      1.31695789693062  -5.81E-12 
16 4.48E-12     1.31695789692614      1.31695789692614  -1.32E-12 
17 1.02E-12     1.31695789692512      1.31695789692512  -3.02E-13 
18 2.33E-13     1.31695789692489      1.31695789692489  -6.95E-14 
19 5.34E-14     1.31695789692483      1.31695789692483  -1.62E-14 
20 1.23E-14     1.31695789692482      1.31695789692482  -4.00E-15 
21 2.85E-15     1.31695789692482      1.31695789692482  0.00E+00 

 
 
Arccosh(x) suffers from the same deficit as the Taylor series for Arcsinh(x). 
 

 First, the Taylor series convergence slowly when x is approaching one.   
 Secondly, you need to calculate the ln(2x) which takes approximately the same 

amount of time as the direct method.  
 Thirdly, you cannot overcome the issue of slow convergence since there is no 

argument reduction available (the technique we use to speed up the Taylor series). 
 Lastly, it is several magnitudes slower than the direct method. 
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Therefore, the Taylor series approach method is not recommended. 
 
Recommendation for calculating Arccosh(x) 
Based on the performance measure of the various arcsinh(x) methods recommend: 
 

 Use the Direct method: Arccosh(x) = ln൫x + √xଶ − 1൯ 
 
 
Arctanh(x) 
There are two interesting methods to use. One is the standard Taylor series and the other one 
is the direct method. 
 
Arctanh(x) direct method 
Arctanh(x) is equal to: 
 

  Arctanh(x) =
ଵ

ଶ
ln ቀ

ଵା୶

ଵି୶
ቁ ,   where |x| < 1    ( 119) 

 
Ln(x) is relatively fast.  This direct method is the preferred way of calculating Arctanh(x). 
. 
Arctanh(x) using the Taylor series 
For arctanh(x) we can use a Taylor series until any additional addition does not change the 
result for the given precision of the number:  
 

Arctanh(x) = x +
୶య

ଷ
+

୶ఱ

ହ
+

୶ళ

଻
+

୶వ

ଽ
− ⋯ , where |x| < 1   ( 120) 

 
Notice the similarity with the arctan(x) Taylor series. Arctanh(x) does not use any alternating 
signs between Taylor terms as the arctan(x) Taylor series does. 
 
Arctanh(x) suffers from the same weakness as the other hyperbolic function, that there is no 
argument reduction formula to lower the argument, x, and increase the performance of the 
Taylor series. 
 
The Arctanh(x) Taylor series converges slowly and particularly close to 1 or -1. 
 
Example Arctanh(0.1) 
We need only seven Taylor terms to get the result. 

ArcTanh(x)  Original  |x|<1 

 x= 0.1   
Terms Term value Term Sum ArcCosh(x) Error 

1 1.00E-01     0.100000000000000      0.100000000000000  3.35E-04 
2 3.33E-04     0.100333333333333      0.100333333333333  2.01E-06 
3 2.00E-06     0.100335333333333      0.100335333333333  1.44E-08 
4 1.43E-08     0.100335347619048      0.100335347619048  1.12E-10 
5 1.11E-10     0.100335347730159      0.100335347730159  9.17E-13 
6 9.09E-13     0.100335347731068      0.100335347731068  7.79E-15 
7 7.69E-15     0.100335347731076      0.100335347731076  0.00E+00 
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Example Arctanh(0.5) 
Now we need 23 Taylor terms to get the result. More than three times as many as for 
arctanh(0.1). 
 

ArcTanh(x)  Original  |x|<1 

 x= 0.5   
Terms Term value Term Sum ArcTanh(x) Error 

1 5.00E-01     0.500000000000000      0.500000000000000  4.93E-02 
2 4.17E-02     0.541666666666667      0.541666666666667  7.64E-03 
3 6.25E-03     0.547916666666667      0.547916666666667  1.39E-03 
4 1.12E-03     0.549032738095238      0.549032738095238  2.73E-04 
5 2.17E-04     0.549249751984127      0.549249751984127  5.64E-05 
6 4.44E-05     0.549294141188672      0.549294141188672  1.20E-05 
7 9.39E-06     0.549303531212711      0.549303531212711  2.61E-06 
8 2.03E-06     0.549305565717919      0.549305565717919  5.79E-07 
9 4.49E-07     0.549306014505833      0.549306014505833  1.30E-07 

10 1.00E-07     0.549306114892603      0.549306114892603  2.94E-08 
11 2.27E-08     0.549306137599134      0.549306137599134  6.73E-09 
12 5.18E-09     0.549306142782147      0.549306142782147  1.55E-09 
13 1.19E-09     0.549306143974239      0.549306143974239  3.60E-10 
14 2.76E-10     0.549306144250187      0.549306144250187  8.39E-11 
15 6.42E-11     0.549306144314416      0.549306144314416  1.96E-11 
16 1.50E-11     0.549306144329437      0.549306144329437  4.62E-12 
17 3.53E-12     0.549306144332965      0.549306144332965  1.09E-12 
18 8.32E-13     0.549306144333797      0.549306144333797  2.58E-13 
19 1.97E-13     0.549306144333993      0.549306144333993  6.16E-14 
20 4.66E-14     0.549306144334040      0.549306144334040  1.50E-14 
21 1.11E-14     0.549306144334051      0.549306144334051  3.89E-15 
22 2.64E-15     0.549306144334054      0.549306144334054  1.22E-15 
23 6.32E-16     0.549306144334054      0.549306144334054  0.00E+00 

 
You can add coefficient scaling to speed things up. However, the Taylor series method is still 
many magnitudes slower than the direct method. 
 
It suffers from the same deficit as the Taylor series for Arcsinh(x) and Arccosh(x) but not as 
bad from a performance perspective. 
 

 First, the Taylor series converges slowly when x is approaching one.   
 Secondly, you cannot overcome the issue of slow convergence since there is no 

argument reduction available (the technique we use to speed up the Taylor series). 
 Lastly, it is several magnitudes slower than the direct method. 

 
Therefore, the Taylor series approach method is not recommended. 
 
Recommendation for calculating Arctanh(x) 
Based on the performance measure of the various arctan(x) methods recommend: 
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Use the direct method. Arctanh(x) =
ଵ

ଶ
ln ቀ

ଵା୶

ଵି୶
ቁ ,   where |x| < 1   

 ( 121) 
 
Overall Recommendation for calculating Hyperbolic functions 

 Use the Taylor series for calculating sinh(x) using argument reductions and 
coefficient scaling 

 Use the Taylor series for calculating cosh(x) using argument reductions and 
coefficient scaling 

 Use  tanh(𝑥) =
௘మೣିଵ

௘మೣାଵ
   for calculating tanh(x) 

 Use Arcsinh(x) = ln൫x + √xଶ + 1൯ for calculating arcsinh(x) 

 Use Arccosh(x) = ln൫x + √xଶ − 1൯ for calculating arccosh(x) 

 Use Arctanh(x) =
ଵ

ଶ
ln ቀ

ଵା୶

ଵି୶
ቁ for calculating arctanh(x) 
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Gamma function 
 
There are several ways to compute the gamma function for various inputs. The general 
definition for any complex number z with a real positive part is: 
 

Γ(𝑧) = ∫ 𝑡௭ିଵ𝑒ି௧𝑑𝑡
ஶ

଴
       (122) 

 

 
Figure 1. Gamma function in the interval [-4:+4] 

 
 
The gamma function has several useful identities. E.g. the recurrence relation. 
 

Γ(𝑧 + 1) = 𝑧Γ(𝑧)       (123) 
 
Given that Γ(1) = 1 and Γ(𝑛 + 1) = 𝑛Γ(𝑛)  is easy to see that the Gamma function for any 
positive integer n, is related to the factorial as: 
 

Γ(𝑛) = (𝑛 − 1)!       (124) 
 
There are other useful identities e.g. for half-integers that: 
 

Γ ቀ
ଵ

ଶ
+ 𝑛ቁ =

(ଶ௡)!

ଶమ೙௡!
√𝜋 𝑓𝑜𝑟 𝑛 ≥ 0     (125) 

 
Or in the negative half of the real axis: 
 

Γ ቀ
ଵ

ଶ
− 𝑛ቁ = (−1)௡ ଶమ೙௡!

(ଶ௡)!
√𝜋 𝑓𝑜𝑟 𝑛 > 0    (126) 

 
Another important equation is Euler’s reflection formula: 
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Γ(𝑧)Γ(1 − 𝑧) =

గ

ୱ୧୬ (௭గ)
=>      (127) 

 
Γ(𝑧) =

గ

୻(ଵି௭)ୱ୧୬ (௭గ)
       (128) 

 
We notice Γ(𝑧) has a pole for z=0 and all negative integer values of z. 
The reflection formula can be used to compute the gamma for a complex z in the negative 
plane by reflecting it into the positive plane. For our computation, we will restrict it to the 
real number x instead of the complex number z. Since we have both specific formulas for 
positive integer values and both positive and negative half-integer values we will in general 
use the following algorithm: 
 
Algorithm for Gamma computation 

1) If x in Γ(𝑥) is a positive integer calculate it directly using factorials. 

2) If x in Γ(𝑥) is a half-integer in the form Γ ቀ
ଵ

ଶ
+ 𝑛ቁ or Γ ቀ

ଵ

ଶ
− 𝑛ቁ then calculate it 

directly using (125) and (126). 
3) If x is negative use Euler’s reflection formula: Γ(𝑥) =

గ

୻(ଵି௫)ୱ୧୬ (௭గ)
 to map x into 

positive territory. 
4) Finally, use one of the approximation methods outlined below. 

Algorithm 15 
 
 
There exist several methods appropriate for arbitrary precision to compute the gamma 
function: 
 

 Lanczos-Spouge method 
 Stirling asymptotic series method 
 Integration by parts method 

 
In general Lanczos and the Stirling asymptotic method are global methods, whereas the 
integration by parts is a local method defined in the interval [1:2]. Of course, there are 
techniques to expand the local method to function as a global method. 
 
Lanczos-Spouge method 
Is Lanczos method from 1964 was modified by Spouge in 1994 which is a much simpler way 
to compute Γ(𝑥) and is very useful for arbitrary precision arithmetic.  
 

Γ(𝑥) =
(௫ା௔)ೣశ

భ
మ

௘ೣశೌ (𝑐଴ + ∑
௖ೖ

௫ା௞

௔ିଵ
௞ୀଵ )     (129) 

 

Where 𝑐଴ = √2𝜋  and  𝑐௞ = (−1)௞ିଵ (௔ି௞)
ೖష

భ
మ

(௞ିଵ)!௘ೖషೌ
 

 
For some value of a. The variable a can be set to any arbitrary value and is used to control the 
maximum error of the calculation. In Yacas [6] they found that the lowest value to compute P 
correct digits in the calculation above was estimated to be: 
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𝑎 = ቒቀ𝑃 −
୪୬(௉)

୪୬(ଵ଴)
ቁ

୪୬(ଵ଴)

୪୬(ଶగ)
−

ଵ

ଶ
ቓ      (130) 

 

To avoid underestimating a, they use  
଺ହଽ

ହଶ଺
 𝑖𝑛𝑠𝑡𝑒𝑎𝑑 𝑜𝑓 

୪୬(ଵ଴)

୪୬(ଶగ)
. 

Now since ck has an alternating sign they further found out in [6] that to avoid cancellation 
errors when calculating ck, the working precision of ck needed to be 1.1515P. In my opinion, 
it is not enough to preserve the accuracy so I use 1.5P instead.  
 
In [21] instead of finding a, from the wanted precision they give instead that the error is 
bounded by: 
 

 𝑒௔(𝑥) =
ଵ

௔బ.ఱ(ଶగ)ೌశబ.ఱ       (131)  

 
For a given precision P the variable a is: 
Precision= 10 100 1,000 10,000 100,000 1,000,000 
a= 11 122 1,249 12,523 125,278 1,252,842 

 
 
 

Lanczos-Spouge Approximation 
Pros Cons 

Accuracy is easy to control and maintain Need to compute  π, ex and √ 
No need to shift/de-shift the Gamma value  

Fast Method  
 
 
Stirling asymptotic series method 
Stirling asymptotic series for Gamma function is given by: 
 

ln൫Γ(𝑥)൯ ~ ቀ𝑥 −
ଵ

ଶ
ቁ ln(𝑥) − 𝑥 +

ଵ

ଶ
ln(2𝜋) + ∑

஻మ೙

ଶ௡(ଶ௡ିଵ)௫మ೙షభ
ஶ
௡ୀଵ   (132) 

 
Where B2n is the Bernoulli number. In Yacas [6] they find that the optimal value for n in the 
summation is given by: 
 

noptimal~π|x|+2        (133) 
 

Furthermore, they state that to reach the needed precision P the following equations need to 
hold: 
 

(2𝜋 − 1)𝑥 + (𝑥 + 1)𝑙𝑛(𝑥) + 3.9 >  𝑃௠௔௫ · 𝑙𝑛(10) =>  (134) 
 

𝑃௠௔௫ = ቔ
(ଶగିଵ)௫ା(௫ାଵ)௟௡(௫)ାଷ.ଽ

୪୬ (ଵ଴)
ቕ     (135) 

 
For a certain magnitude of |x| we get: 
|x|= 1 10 100 1,000 10,000 100,000 
Pmax= 3 35 433 5,299 62,950 729,452 
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This is discouraging since for small |x| we cannot get a reasonable precision out of this 
method.  To circumvent this deficit we can use the recurrence 𝑥Γ(𝑥) = Γ(𝑥 + 1), M number 
of times to increase the magnitude. E.g. if |x| is 1 and we need the result with 35 digits the 
magnitude of |x| needs to be more than 10 from the table above. Instead of calculating Γ(𝑥), 
we calculate Γ(𝑥 + 10) and then divide Γ(𝑥 + 10) 10 times as outlined: 
 

 Γ(𝑥) =
୻(௫ାଵ଴)

௫(௫ାଵ)(௫ାଶ)(௫ାଷ)(௫ାସ)(௫ାହ)(௫ା଺)(௫ା଻)(௫ା଼)(௫ାଽ)
  (136) 

 
In general, if you shift it a distance of M you can write this as: 
 

Γ(𝑥) =
୻(௫ାெ)

∏ (௫ା௠)ಾషభ
೘సబ

       (137) 

 
Unfortunately, the above formula for Pmax is not very accurate to generate the number of 
shifts needed and in general indicates a shifting that is not sufficient for the desired accuracy. 
Instead, we use from [22] that states the number of shifts needed as follows. 
 

|𝑥 + 𝑠ℎ𝑖𝑓𝑡𝑠| = 𝑃 ∗
୪୬(ଵ଴)

୪୬(ଶ)
∗ 0.11038 =>    (138) 

 

𝑠ℎ𝑖𝑓𝑡𝑠 = 𝑃 ∗
୪୬(ଵ଴)

୪୬(ଶ)
∗ 0.11038 − |𝑥|     (139) 

 
This formula works both ways. If |x| is small the shift is positive. If |x| is large the shift is 
negative. This is a huge benefit that we can use it both ways to reduce the argument and 
thereby reduce the number of terms needed for the ∑ (also reducing the number of Bernoulli 
numbers we need to compute).  
 

Stirling  Asymptotic method 
Pros Cons 

Accuracy is great for large magnitude of 
|x| 

Poor Accuracy for the small magnitude of 
|x| 

De-shifting is beneficial for large |x| Need to compute  π, ex, ln() and √ 
 Need to compute Bernoulli numbers 
 Need to shift gamma value for small 

magnitude |x| 
 Slow Computation 

 
Integration by parts method 
A third method is a so-called Integration by parts method which for x in [1:2] you can apply 
the integration by parts for Euler’s integral. The integral can be written as: 
 

Γ(𝑥) = ∫ 𝑡௫𝑒ି௧ ௗ௧

௧

ெ

଴
+ ∫ 𝑡௫𝑒ି௧ ௗ௧

௧

ஶ

ெ
     (140) 

 
The first integral is the lower incomplete gamma function and the second integral is the upper 
incomplete gamma function. You can choose, M so that the second integral is below the 
wanted precision of 10-P where P is the precision in decimal digits. The second integral can 
therefore be ignored. Then Γ(𝑥) becomes: 
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Γ(𝑥) ≈ ∫ 𝑡௫𝑒ି௧ ௗ௧

௧

ெ

଴
= 𝑀௫𝑒ିெ ∑

ெ೙

∏ (௫ା௞)೙
ೖసబ

ஶ
௡ୀ଴    (141) 

 
Now the question is how to choose an appropriate M. in Yacas [6] they find the condition to 
be that:  
 

𝑀 > (𝑃 + ln(𝑃))ln (10)      (142) 
 
The only thing missing now is how many terms (Nmax) of the series you need to calculate. 
Again in [6] they find that to be: 
 

 𝑁௠௔௫ = 𝑃
୪୬ (ଵ଴)

ௐ(
భ

೐
)

 , where W is Lambert’s function 𝑊 ቀ
ଵ

௘
ቁ ≈ 0.2785  (143) 

 
With that we have the final formula: 
 

Γ(𝑥) ≈ 𝑀௫𝑒ିெ ∑
ெ೙

∏ (௫ା௞)೙
ೖసబ

ே೘ೌೣ
௡ୀ଴      (144) 

 
The only issue left to fix is the condition that x should be in the interval 1 ≤ 𝑥 ≤ 2 
 
We can use the same shifting technique as described earlier to map all x outside the interval 
into the interval [1-2] e.g. if x> 2 you use. 
 

Γ(𝑥) = ∏ (𝑥 − 𝑚)Γ(𝑥 − 𝑘)௞ିଵ
௠ୀ଴      (145) 

 

E.g. if x=5.6 then k=4.   If x=0.6 then Γ(0.6) =
୻(଴.଺ାଵ)

∏ (௫ା௠)బ
೘సబ

 

 
If x is negative you can use Euler’s reflection formula described earlier to map x into a 
positive number. 
 

Integration by parts method 
Pros Cons 

Fast method Only works in the interval [1-2] 
Simplicity Use of ex 

 Need to shift/de-shift gamma value 
outside the interval [1-2] 

 
Gamma Performance 
The performance in the graph below indicates the best-performing method is the method with 
integration by parts. It consistently performs better than Stirling and the Lanczos-Spouge 
method. Notice that Stirling is measured with a small, medium, and large argument. The 
small argument is approx. 20 times slower than for the medium and large arguments. This is 
deceptive and the reason is that Stirling-small was first computed and it builds up the 
Bernoulli numbers that are cached so when Stirling-Medium and Stirling large are called then 
the Bernoulli number is already in the cache. However, it clearly shows that the method is 
very slow when Bernoulli numbers are not pre-calculated but even when cached the Stirling 
method was significantly slower than the two other methods.  
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Figure 2. Gamma Performance 
 
Recommendation for the Gamma function 
The method with integration by parts is the simplest and fastest method even when this 
method relies on the shifting technique to accommodate the x-value outside the interval [1:2]. 
In second place is the Lanczos-Spouge method and third is the Stirling asymptotic method. 
Because the Stirling Asymptotic method relies on the Bernoulli numbers, the method is not 
recommended even if the Bernoulli number is pre-calculated it is still significantly slower 
than the two other methods. The Stirling-small argument does compute the Bernoulli number 
while Stirling-Medium and Stirling-Large use the cached Bernoulli number. 
 

The Beta function 
 
The beta function is defined by the integral: 
 

𝐵(𝑧, 𝑤) = ∫ 𝑡௭ିଵ(1 − 𝑡)௪ିଵ𝑑𝑡
ଵ

଴
     (146) 

 
And it is symmetric, meaning that B(z,w)=B(w,z). 
 
One of the nice things about the Beta function is that its related to the Gamma function: 
 

𝐵(𝑧, 𝑤) =
୻(୸)୻(୵)

୻(୸ା୵)
       (147) 

 
Since we in the previous section have described the Gamma function we can easily 
implement the Beta function using the Gamma function (tgamma in the C library) 
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The Error function 
 
The error function is used within statistical computations and many other fields. The error 
function erf(x) is defined as: 
 

erf(𝑥) =
ଶ

√గ
∫ 𝑒ି௧మ௫

଴
𝑑𝑡      (148) 

 

 
Figure 3. Error function in the interval [-2:+2] 
 
The error function is symmetric meaning that erf(-x)=-erf(x). 
 
The complementary error function is defined as: 
 

erfc(x) =
ଶ

√గ
∫ 𝑒ି௧మஶ

௫
𝑑𝑡 = 1 − erf (𝑥)    (149) 

 
For the numerical computation of the error function with arbitrary precision arithmetic there 
are three formulas suited for this job [24]: 
 

Formula 1: erf(𝑥) =
ଶ௫

√గ
∑ (−1)௡ ௫మ೙

(ଶ௡ାଵ)௡!
ஶ
௡ୀ଴       (150) 

 

Formula 2: erf(𝑥) =
ଶ௫௘షೣమ

√గ
∑

(ଶ௫మ)೙

(ଶ௡ାଵ)!!
ஶ
௡ୀ଴ , ‼ 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑜𝑢𝑏𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙  (151) 

 

Formula 3: erfc(𝑥) =
௘షೣమ

௫√గ
∑ (−1)௡ (ଶ௡ିଵ)‼

(ଶ௫మ)೙
ஶ
௡ୀ଴ , ‼ 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑜𝑢𝑏𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 (152) 

  
Formula 1 and 3 have the weakness of using alternating signs between the terms, while 
formula 2 needs a calculation of the exponential function ex as well. Using alternating sign in 
a summation always give rise to cancellation errors and thereby lack accuracy if not 
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controlled. In [24] they give a details explanation of each method together with an error 
bound for each formula and a practical implantation guide for the formula. For all three 
methods, you don’t need to know how many terms you would need in the summation. You 
can just continue until the next term is below the requested precision for x and then terminate 
the summation. In [6] they recommend only using formula one for |x|≤1 and give the 
following number of terms needed to archive an accuracy for P decimal digits: 
 

 𝑛 > 1 + 𝑒
ቆଵାௐቀ

ು∙ౢ౤(భబ)

೐
ቁቇ

, 𝑊 𝑖𝑠 𝑡ℎ𝑒 𝐿𝑎𝑚𝑏𝑒𝑟𝑡ᇱ𝑠 𝑊 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (153) 
 
In [24] they also give an error bound for each formula and the readers kindly refer to [24] for 
the details. Furthermore, in [24] they also recommend using concurrent series summation 
instead of the straightforward way. This is a little bit more complicated to implement but [24] 
gives a detailed explanation of how to do it properly.  
In regards to formula 3 which also suffer from alternating sign, I found it easier to just use the 
identity: erfc(x)=1-erf(x) and rely on just a single solid erf() implementation. Another deficit 
of formula 3 is that the achievable accuracy depends on the magnitude of the number. In [24] 
they found that the achievable accuracy for P decimal digits was: 
 

𝑃~𝑒ଶ୪୬ (௫) ୪୬ (ଶ)

୪୬(ଵ଴)
       (154) 

 
And depends on the magnitude of x. 
e.g. 
Formula 3 erfc Magnitude of x 
 1 10 100 1,000 
Precision Digits 0.3 30 3,010 301,030 

 
Since the achievable precision depends on the magnitude of x and there is nothing else you 
can do, formula 3 is not very useful for a general computation of the complementary error 
function. 
 
Performance of the error function 
The chart below shows the performance of the straightforward implementation and the 
implementation using concurrent series. They should only be compared pairwise. But in all 
cases, the method using concurrent series is many times faster than the straightforward 
approach. 
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Figure 4. Performance of the Error function 
 
Recommendation for the Error function 
I recommend using formula two implemented with the concurrent series method. The benefit 
is that it is stable due to not using alternating signs between the terms and even though it 
requires a computation of the exponential function it is still significantly faster than any of 
the other methods and works well for both large magnitudes of x and smaller magnitudes of 
x.   
 

Lambert W function 
Lambert W function is the solution to wew=z where z is any complex number. Since we are 

only dealing with the real value x, we can solve wew=x for any 𝑥 ≥ −
ଵ

௘
 and we get w=W0(x) 

if x≥0 and two values w=W0(x) and W-1(x) if −
ଵ

௘
≤ 𝑥 < 0. 

W0 is called the primary branch and that is the one we want to compute. 
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Figure 5 Lambert W function w0(x) in the interval ]-1/e:10] 
 
There are 3 different methods suitable for arbitrary precision. These are: 

 Newton's iterative method (quadratic convergence). 
 Halley’s iterative method (cubic convergence). 
 Boyd-Iacono iterative method (quadratic convergence). 

 
As always for iterative methods, we need to find a suitable starting point for our iterations. 
Since we use the same start point for all three iterative methods we will describe it first and 
then address each of the above methods. 
 
A Suitable starting point for Lambert W Iteration. 
We do not usually have a Lambert W function available where we easily can get the first 15-
16 digits accuracy using the built-in double type in C or C++.  If you look in the literature 
they usually suggest a starting point for Lambert W function as follows.  
 

 
Figure 6 amber color is W0(x) 
 
If x in [e,∞]:  𝑤଴(𝑥) = ln(𝑥) − ln (ln(𝑥))   “blue line in the above figure 
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If x in [0,e[:  𝑤଴(𝑥) =
௫

௘
    “magenta line in above figure” 

If x in [-1/e,0[: 𝑤଴(𝑥) =
௘∙௫

ଵା௘∙௫ା√ଵା௘∙௫
ln (1 + √1 + 𝑒 ∙ 𝑥 

 
Not an impressive precise start point however, it usually gives a relative error of less than 10-

1 as the start point. 
 
Newton’s quadratic method 
A classic Newton method can be used and you will iterate through the following iteration: 
 

𝑤௡ାଵ = 𝑤௡ −
௪೙∙௘ೢ೙ି௫

௘ೢ೙ା௪೙௘ೢ೙
      (155) 

 
Newton’s method has a quadratic convergence rate meaning that the number of correct digits 
doubles with every iteration. Unfortunately, it is required to evaluate 𝑒௪೙  for every iteration. 
This is certainly not ideal since that will be the dominant time-consuming part of our 
computation.  
 
Halley’s cubic method 
Alternatively, a cubic convergence rate is Halley’s iteration: 
 

𝑤௡ାଵ = 𝑤௡ −
௪೙∙௘ೢ೙ି௫

௘
ೢ೙(ೢ೙శభ)శ

(ೢ೙శమ)(ೢ೙∙೐ೢ೙షೣ)
మ(ೢ೙శమ)

    (156) 

 
Again we see that we need to calculate 𝑒௪೙  and two divisions for every iteration. 
 
Boyd quadratic method 
Boyd & Iacono iteration has quadratic convergence which is the same as the Newton method.  
 

𝑤௡ାଵ =
௪೙

ଵା௪೙
(1 + ln (

௫

௪೙
))      (157) 

 
It looks simpler than the Newton method however, you also need to compute a time-
consuming function ln(x) for every iteration and two divisions. 
 
Initial performance of Lambert W function 
Performance wise Halley is faster but only up to around 6,000 digits precision then the Boyd 
method takes over even though the Halley iteration uses fewer iterations than the Boyd 
method. The reason is that our implementation of ln(x) in arbitrary precision is faster than the 
exp(x) function and therefore Boyd iteration will win despite only having a quadratic 
convergence rate. 
 
However, there is a technique for speeding up this classic iterative method which has 
previously been described in this paper. Instead of iterating with the use of full precision for 
each iterative variable. We instead dynamically change them as we iterate to be able to 
accommodate the target precision for each iteration step. E.g. if we need 1,000 digits 
precision of Lambert W(x) we do not need more than 20 digits for the first 5 iterations 
(remember that our initial guess was around an accuracy of 10-1and then we can graduate 
increase them to our target precision of 1,000 digits over the next 6 iterations. It would not be 



The Math behind arbitrary precision 
 

23 February 2023       www.hvks.com/Numerical/arbitrary_precision.html Page 111 
 

very wise to carry these first 5 and subsequent iterations with a precision of 1,000 digits. 
Needless to say that this dramatically speeds up the computation. 
 
Performance of Lambert W function 
All “dynamic” methods are somehow similar but the Boyd methods begin to takeoff after 
approx. 6,000 digits and is thereafter the fastest method. See the performance chart below. 
 

 
Figure 7. Performance of Lambert W(x) function 
 
Recommendation for Lambert W function 

 The preferred method is Boyd’s method.  
 Although Halley is close after. However, if your arbitrary precision has a faster exp(x) 

function than log(x) then the Halley method is the preferred one. 
 

Riemann Zeta function 
 
The Riemann zeta function is defined for any complex value z as: 
 

𝜁(𝑧) = ∑
ଵ

௡೥
ஶ
௡ୀ଴        (158) 

 
The graph for any real value 𝜁(𝑥) is below with a pole for s=1 
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Figure 8 Zeta(x) in the interval [-30:+30] 
 
There are several interesting identities. One of them is this formula that is useful for negative, 
s that map s, into the positive real axis. 

  

𝜁(1 − 𝑠) =
ଶ୻(௦)

(ଶగ)ೞ cos (
గ∙௦

ଶ
)𝜁(𝑠)     (159) 

 
There are many others and quite a few for special values of s when s is an even or odd 
integer. We are looking into a more general method to calculate 𝜁(𝑠) for any real values. 
Peter Borwein published several methods in 1995 [25] and in particular, his algorithm 3 is of 
interest dues to its simplicity. The formula ([25]) below is valid for any real s>-(n-1). 
 

𝜁(𝑠) =
ିଵ

ଶ೙(ଵିଶభషೞ)
∑

௘ೕ

(௝ାଵ)ೞ
ଶ௡ିଵ
௝ୀ଴      (160) 

 
Where ej is defined as: 
 

𝑒௝ = (−1)௝((∑
௡!

௞!(௡ି௞)!
)

௝ି௡
௞ୀ଴ − 2௡)     (161) 

 
The ∑ is zero for j<n.  The parameter n needs to be chosen to ensure that the desired 
precision is reached. The formula above has an error estimation O(8-n). To achieve P decimal 
digits precision you need: 
 

𝑛 = ቒ
୪୬ (ଵ଴)

୪୬ (଼)
𝑃ቓ        (162) 

 
Unfortunately, if we look at the formula for 𝜁(𝑠) we notice that we have two power function 
calls, (j+1)s and 21-s. The latter has to be repeated 2n times. The power function xy requires a 
call to both log() and the exp() function, if s, is not an integer and is therefore a very 
expensive function to call, so we can’t expect too high performance when computing the zeta 
function. 
However, we get a little bit of a break when s is large, where the use of the actual definition 
for the zeta function performs faster than the Borwein formula. If the condition  
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𝑠 > 1 + 𝑃
୪୬ (ଵ଴)

୪୬ (௉)
       (163) 

 
Where P, is the target precision (in decimal digits) is met [6]. We can resort to the below 
series for faster computation. 
 

𝜁(𝑠) ≈ ∑
ଵ

௞ೞ
ே
௞ୀ଴        (164) 

 
And a suitable value for N is: 
 

𝑁 = ቒ10
ು

ೞషభቓ        (165) 

 
Now there are some handy shortcuts we can make that are easy to compute. These are if s is 
equal to zero, is a negative integer, or is a positive even integer. 
 
Short-cut identities for ζ. Bn is the n’th Bernoulli number and n is an integer: 
 

𝜁(0) = −
ଵ

ଶ
        (166) 

 

𝜁(−𝑛) = (−1)௡ ஻೙శభ

௡ାଵ
       (167) 

 

𝜁(2𝑛) = (−1)௡ ஻మ೙(ଶగ)మ೙

ଶ(ଶ௡)!
      (168) 

 
For odd positive integers, there is unfortunately not an easy formula, however, there is a 
myriad of series you can find in various published papers that promise faster than the above 
general formula for zeta. 
 
Optimization of the ζ(s) series. If we look at the computation for ej in equation (161). 
 

𝑒௝ = (−1)௝((∑
௡!

௞!(௡ି௞)!
)

௝ି௡
௞ୀ଴ − 2௡)     (169) 

 

We notice that 
௡!

௞!(௡ି௞)!
 are the binomial coefficients or (

𝑛
𝑘

) and it is usually faster to call our 

optimized binomial (n,k) function than just calculating the three factorials. ej becomes: 
 

𝑒௝ = (−1)௝((∑ (
𝑛
𝑘

))
௝ି௡
௞ୀ଴ − 2௡)     (170) 

 
However, the real optimization trick is when we realized that we can replace the ∑ with the 
following recurrence: 

 
𝑖𝑓 𝑗 < 𝑛: 𝑠𝑢𝑚௝ = 0 

𝑖𝑓 𝑗 ≥ 𝑛: 𝑠𝑢𝑚௝ = 𝑠𝑢𝑚௝ିଵ + ቀ
𝑛

𝑗 − 𝑛ቁ 

 
And ej now becomes: 
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𝑒௝ = (−1)௝(𝑠𝑢𝑚௝ − 2௡)      (171) 

 
This trick speeds up the computation by more than 1,600-2,000 times when calculating ζ(3) 
with 500 digits precision. 
 
We can now present our final algorithm for the ζ(s) function 
 
Algorithm 16 for ζ(s) where s is any real value not equal to 1 

if s=0 return -0.5  
if s an integer? 
 if s negative? 
  if s even =>  return 0 
  return compute (70) 
 if s even? 
  return compute (71)  
// s is real or s is odd integer goes here 
if s < 0.5?  
 return compute (62) 
if s > 1+P·log(10)/log(P)   // if s large?, P is the decimal precision required 
 return compute (67) 
// s is > 0.5 but not large   
 return compute (63) 

 
 

Euler-Mascheroni constant 
 
The Euler-Mascheroni constant 𝛾 is defined as: 
 

𝛾 = lim
௡→ஶ

ቀ∑
ଵ

௞
− l n(𝑛)௡

௞ୀଵ ቁ ≈ 0.577215664    (172) 

 
The above equation (1) converts only slowly and it is not useful for arbitrary precision 
arithmetic. Instead, there are a few other interesting methods 
 

 Brent-McMillan method 
 Brent enhancement 
 The binary splitting version of the Brent-McMillan method 

 
 
Brent-McMillan method 
To compute 𝛾 you can use the Brent-McMillan decomposition [6]. 
 

𝛾 ≈
ௌ(௡)

௏(௡)
− ln (𝑛)       (173) 

 
Where S(n) and V(n) are some auxiliary functions and n is chosen to ensure high enough 
precision for the result. 
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Furthermore the sequence S(n) and V(n) is defined as: 
 

𝑆(𝑛) = ∑ (
௡ೖ

௞!
)ଶஶ

௞ୀ଴ ∙ 𝐻௞      (174) 

 

𝑉(𝑛) = ∑ (
௡ೖ

௞!
)ଶஶ

௞ୀ଴        (175) 

 
And the sequence Hn is defined as the partial sum of the Harmonic series: 
 

𝐻௡ = ∑
ଵ

௞

௡
௞ୀଵ         (176) 

 
Two questions arise. What is an appropriate value for n and when should the k summation 
stop? Brent estimated the minimum value for n as a function for the required precision P to 
be: 
 

𝑛 = ቒ
௉∙୪୬(ଵ଴)ା୪୬ (గ)

ସ
ቓ       (177) 

 
And the required number of terms kmax in the summation as a function of the precision P to 
be: 
 

𝑘௠௔௫ ≈ 2.07 ∙ 𝑃       (178) 
 
Technically we don’t need to know the kmax before since we can just terminate the S(n) and 
V(n) sequence when the individual term value becomes less than the required precision 
dictate. (Usually, that will require a few more iterations than just using kmax). 
 
Brent enhancement 
Brent further improves the above formula by using a clever summation trick. Brent defined 
U(n) as: 
 

𝑈(𝑛) = 𝑆(𝑛) − 𝑉(𝑛) ∙ ln (𝑛)      (179)  
 
Then 

 

𝛾 ≈
௎(௡)

௏(௡)
        (180) 

 
And  
 

𝑈(𝑛) = ∑ 𝐴௞
ஶ
௞ୀ଴        (181) 

 
Where Ak is: 
 

𝐴௞ = ቀ
௡ೖ

௞!
ቁ

ଶ

(𝐻௞ − ln (𝑛))       (182) 

 
Furthermore, we use Bk as the nth term of the V(n) series. 
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𝐵௞ = (
௡ೖ

௞!
)ଶ        (183) 

 
We can then compute the Ak and Bk simultaneously using the below recurrence.  
 
Algorithm Brent summation trick 

𝐴଴ = − ln(𝑛) , 𝐵଴ = 1 
 

𝐵௞ = 𝐵௞ିଵ ∙
𝑛ଶ

𝑘ଶ
 

𝐴௞ =
1

𝑘
ቆ𝐴௞ିଵ ∙

𝑛ଶ

𝑘
+ 𝐵௞ቇ = 𝐴௞ିଵ ∙

𝑛ଶ

𝑘ଶ
+

𝐵௞

𝑘
 

Algorithm 17 
 
Binary splitting method for 𝜸 
Lastly, you can use the Binary splitting technic as outlined in [26] 
 
Algorithm: Binary splitting method for 𝛾 (7 variables) 

  𝑠𝑒𝑡 𝑚 =
௔ା௕

ଶ
 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 

  P(a,b)=P(a,m)Q(m,b)+Q(a,m)P(m,b) 
  Q(a,b)=Q(a,m)Q(m,b) 
  R(a,b)=R(a,m)S(m,b)+T(a,m)R(m,b) 
  S(a,b)=S(a,m)S(m,b) 
  T(a,b)=T(a,m)T(m,b) 
  U(a,b)=U(a,m)V(m,b)+P(a,m)T(a,m)Q(m,b)R(m,b)+Q(a,m)T(a,m)U(m,b) 
  V(a,b)=V(a,m)V(m,b) 
 
  And P(b-1,b)=1;  Q(b-1,b)=b; R(b-1,b)=n2; S(b-1,b)=b2; T(b-1,b)=n2; 
   U(b-1,b)=n2; V(b-1,b)=b3; 
Algorithm 18 
 
You continue this recursive breakdown until a+1=b and you set: 

P(a,b)=1  Q(a,b)=b   R(a,b)=n2  S(a,b)=b2  T(a,b)=n2  U(a,b)=n2  V(a,b)=b3 
 and let the formula reverse bottom up. 
 
In the end, you find 𝛾 by: 
 

𝛾 =
௎(଴,௜)

ொ(଴,௜)(ோ(଴,௜)ାௌ(଴,௜))
− ln (n)     (184) 

 
In [26] they found that i=3.5911214766686221366n as the number of needed terms as a 
function of n. And n can be chosen as in (26). 
 
Now the binary splitting algorithm requires seven variables. You can quite easily reduce the 
number of variables from 7 to 5 by noting that S(m,b)=Q(m,b)2 and V(m,b)=Q(m,b)3, and you 
get the reduced variable version. 
 
Algorithm: Binary splitting method for 𝛾 (5 variables) 
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 𝑠𝑒𝑡 𝑚 =
௔ା௕

ଶ
 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 

 P(a,b)=P(a,m)Q(m,b)+Q(a,m)P(m,b) 
 Q(a,b)=Q(a,m)Q(m,b) 
 R(a,b)=R(a,m)Q(m,b)2+T(a,m)R(m,b) 
 T(a,b)=T(a,m)T(m,b) 
 U(a,b)=U(a,m)Q(m,b)3+P(a,m)T(a,m)Q(m,b)R(m,b)+Q(a,m)T(a,m)U(m,b) 
  
 And P(b-1,b)=1;  Q(b-1,b)=b; R(b-1,b)=n2; T(b-1,b)=n2; U(b-1,b)=n2;  
Algorithm 19 
 
At the end you find 𝛾 by (now that S(0,i) has been replaced by Q(0,i)2: 
 

𝛾 =
௎(଴,௜)

ொ(଴,௜)(ோ(଴,௜)ାொ(଴,௜)మ)
− ln (n)      (185) 

 
The 5 variables version does perform better but not impressively better.  
 
It is relatively easy to create a threaded version of the binary splitting algorithm and it has 
been proven advantageous to increase the performance by just threading the computational 
task. 
 
Performance of Euler-Mascheroni constant 
It is quite clear by looking at the performance chart that the binary splitting method is 
superior for the computation of the Euler-Mascheroni constant. The traditional Brent-
McMillan (Brent 1) and Brent Summation trick (Brent 2) methods can’t be recommended for 
fast computation of the Euler-Mascheroni constant. However Brent Summarization trick is a 
significant improvement over the standard Brent-McMillan formula. 
 

 
Figure 9 Euler-Mascheroni Performance 
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Recommendation for the Euler-Mascheroni constant 
Based on the performance chart below, I recommend the Binary splitting method and for 
digits above 1,000 digits the threaded binary splitting version outperforms the non-threaded 
version. 
 

Catalan’s constant G 
 
The Catalan constant G is defined as: 
 

𝐺 = ∑
(ିଵ)೙

(ଶ௡ାଵ)మ
ஶ
௡ୀ଴        (186) 

 
The Catalan constant is ~0.9159655941772… 
 
This series also convert slowly. However, there are several alternative methods to consider. 
 

 Ramanujan method I 
 Ramanujan method II 
 Broadhurst series 
 Binary splitting method (ref. [4]) 

o Lucas(2000) 
o Guillera (2008) 
o Guillera (2019) 
o Pilehrood (2010) 

 
Ramanujan’s method I 
This is one of the many Ramanujan series for fast calculation of the Catalan constant. 
 

𝐺 =
గ

଼
𝑙𝑛൫2 + √3൯ +

ଷ

଼
∑

(௡!)మ

(ଶ௡)!(ଶ௡ାଵ)మ
ஶ
௡ୀ଴     (187) 

 

To achieve P, decimal precision we need to take 𝑃
୪୬ (ଵ଴)

୪୬ (ସ)
 terms of the series and we can use 

Horner’s schema to efficiently summarize the series. One of the drawbacks of this method is 
that we need to calculate π, ln(2+√3), and √3 to arbitrary precision.  Horner’s schema looks 
like this: 
 

1 +
ଵ

ଶ∙ଷ
ቆ

ଵ

ଷ
+

ଶ

ଶ∙ହ
൬

ଵ

ହ
+

ଷ

ଶ∙଻
ቀ

ଵ

଻
+ ⋯ ቁ൰ቇ     (188) 

 
And the algorithm for the Horner schema sum. 
Sum=0 
For(k=1;k<=n;++k) 
 Sum+=1/(2k+1) 
 Sum*=k/(2(2k+1)) 
Algorithm 20 
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Ramanujan’s method II 
 Another of Ramanujan’s methods is based on this formula: 
 

𝐺 = ∑
(௞!)మ

(ଶ௞ାଵ)!

ஶ
௞ୀ଴ ∙ 2௞ିଵ ∑

ଵ

ଶ௝ାଵ

௞
௝ୀ଴       (189) 

 
In [23] Free use this formula and Brent summation trick to obtain the following algorithm: 
 
Algorithm for Ramanujan’s II 
B0=0.5, C0=0.5, G0=0.5 
For(k=1;k<=n;++k) 
 tmp=k/(2k+1) 
 Bk=Bk-1*tmp 
 Ck=Ck-1*tmp+Bk/(2k+1) 
 Gk=Gk-1+Ck 
Algorithm 21 
  
We need a little bit more to achieve P, decimal precision compare to the first method. In [6] 

find that we need to take 𝑃
୪୬ (ଵ଴)

୪୬ (ଶ)
 terms to reach the desired precision. 

 
Broadhurst series 
Broadhurst series has a faster convergence rate than Ramanujan’s series at the expense of 
higher complexity. 
 

𝐺 = 3 ∑
ଵ

ଵ଺ೖ
∑

௔೔

(଼௞ା௜)మ
− 2 ∑

ଵ

ସ଴ଽ଺ೖ
∑

௕೔

(଼௞ା௜)మ
଻
௜ୀ଴

ஶ
௞ୀ଴

଻
௜ୀ଴

ஶ
௞ୀ଴   (190) 

 
Where:  

ai=(0,1/2,-1/2,1/4,0,-1/8,1/8,-1/16) and  
bi=(0,1/8,1/16,1/64,0,-1/512,-1/1024,-1/4096). 

 

For a precision P, we need only to take ቒ𝑃
୪୬ (ଵ଴)

୪୬ (ଵ଺)
ቓ terms to reach the desired precision of the 

first series and ቒ𝑃
୪୬ (ଵ଴)

୪୬ (ସ଴ଽ଺)
ቓ for the second series. However, each term is also 6 times more 

complicated than the Ramanujan I series. In [6] they state that due to the extra complexity, it 
is not worth implementing it. However, I found that an efficient implementation of the 
Broadhurst series results in higher performance than the Ramanujan series for the Catalan 
constant. 
 
Lupas Binary Splitting method 
Lupas series for the Catalan constant is: 
 

𝐺 =
ଵ

଺ସ
∑

(ିଵ)ೖషభଶఴೖ(ସ଴௞మିଶସ௞ା )(ଶ௞)!య௞!మ

௞య(ଶ௞ିଵ)(ସ௞)!మ
ஶ
௞ୀଵ     (191) 

 
As we have seen many times before we can transform this series into a binary Splitting 
method using the below algorithm: 
 
Algorithm: Binary splitting method for Catalan – Lupas (2000) 
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 𝑠𝑒𝑡 𝑚 =
௔ା௕

ଶ
 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 

 P(a,b)=P(a,m)Q(m,b)+P(m,b)R(a,m) 
 Q(a,b)=Q(a,m)Q(m,b) 
 R(a,b)=R(a,m)R(m,b) 
   
 And: 

P(b-1,b)=(32(2b-1)b3)(40b2+56b+19)(-1)b 
Q(b-1,b)=(4b+1)2(4b+3)2 
R(b-1,b)=32(2b-1)b3  

Algorithm 22 
 
You continue this recursive breakdown until a+1=b and let the formula reverse bottom up.  
 
In the end, you find G by: 
 

𝐺 =
௉(଴,௡)ାଵଽொ(଴,௡)

ଵ଼ொ(଴,௡)
+ 𝑂(4ି௡)      (192) 

 
For n terms, the error is 𝑂(4ି௡) and for a given precision, P you need: 
 

𝑛 = ቒ𝑃
୪୬ (ଵ଴)

୪୬ (ସ)
ቓ        (193)  

 
In [26] they found the linearly convergent cost to be ~11.5, which makes is not as fast as the 
Guillera or Pilehrood methods. 
 
 
Guillera Binary Splitting method 
Guillera publish two methods back in 2008 and 2019. The first method used: 
 

𝐺 =
ଵ

ଶ
∑

(ି଼)ೖ(ଷ௞ାଶ)

(ଶ௞ାଵ)య(
ଶ௞
௞

)య

ஶ
௞ୀ଴       (194) 

 
Converting into a binary splitting method, they found in [26] that the linearly convergent cost 
is ~11.5 around the same as for the Lupas binary splitting method. In [26] they rewrote the 
formula to: 
 

𝐺 =
ଵ

ଶ
∑

(ି଼)ೖ(ଷ௞ାଶ)௞!ల

(ଶ௞ାଵ)!య
ஶ
௞ୀ଴       (195) 

 
And archive a linearly convergent cost of ~5.7 making it faster than the Lupas method. 
 
Algorithm: Binary splitting method for Catalan – Guillera (2008) 

 𝑠𝑒𝑡 𝑚 =
௔ା௕

ଶ
 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 

 P(a,b)=P(a,m)Q(m,b)+P(m,b)R(a,m) 
 Q(a,b)=Q(a,m)Q(m,b) 
 R(a,b)=R(a,m)R(m,b) 
   
 And: 
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P(b-1,b)= b3(3b+2) 
Q(b-1,b)=-(2b+1)3(2b-1)3 
R(b-1,b)=b3(2b+1)3  

Algorithm 23 
 
You continue this recursive breakdown until a+1=b and let the formula reverse bottom up.  
 
In the end, you find G by: 
 

𝐺 = 1 +
ଵ

ଶ

௉(଴,௡)

ொ(଴,௡)
+ 𝑂(8ି௡)      (196) 

 
For n terms the error is 𝑂(8ି௡) and for a given precision, P you need: 
 

𝑛 = ቒ𝑃
୪୬ (ଵ଴)

୪୬ (଼)
ቓ        (197)  

 
In 2019 Guillera publish another formula with a higher convergence rate. The formula looks 
intimidating at first glance: 
 

𝐺 = −
ଵ

ଵ଴ଶସ
∑

(ିସ଴ଽ )ೖ(ସହଵଷ଺௞రିହ଻ଵ଼ସ௞యାଶଵଶସ଴௞మିଷଵ଺଴௞ାଵ଺ହ)

௞య(ଶ௞ିଵ)య
ஶ
௞ୀଵ (

(ଶ௞)!ల(ଷ௞)!య

௞!య(଺௞)!య ) (198) 

 
But has a linearly convergent cost of only ~4.2 which is lower than Guillera’s formula from 
2008. 
 
Algorithm: Binary splitting method for Catalan – Guillera (2019) 

 𝑠𝑒𝑡 𝑚 =
௔ା௕

ଶ
 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 

 P(a,b)=P(a,m)Q(m,b)+P(m,b)R(a,m) 
 Q(a,b)=Q(a,m)Q(m,b) 
 R(a,b)=R(a,m)R(m,b) 
   
 And: 

P(b-1,b)= 45136b4-57184b3+21240b2-3160b+165 
Q(b-1,b)=-27(6b-1)3(6b-5)3 
R(b-1,b)=512b3(2b-1)3  

Algorithm 24 
 
You continue this recursive breakdown until a+1=b and let the formula reverse bottom up.  
 
In the end, you find G by: 
 

𝐺 = −
ଵ

ଶ

௉(଴,௡)

ொ(଴,௡)
+ 𝑂((

ଵଽ଺଼ଷ

଺ସ
)ି௡)     (199) 

 

For n terms, the error is 𝑂((
ଵଽ଺଼ଷ

଺ସ
)ି௡) and for a given precision, P you need: 

 

𝑛 = ቜ𝑃
୪୬ (ଵ଴)

୪୬ (
భవలఴయ

లర
)
ቝ       (200) 
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Pilehrood binary splitting method 
Pilehrood publish two formulas in 2010. The short and long formula. 
 

𝐺 =
ଵ

଺ସ
∑

ଶହ଺ೖ൫ହ଼଴௞మିଵ଼ସ௞ାଵହ൯

௞య(ଶ௞ିଵ)ቀ
଺௞
ଷ௞

ቁቀ
଺௞
ସ௞

ቁቀ
ସ௞
ଶ௞

ቁ

ஶ
௞ୀଵ      (201) 

 
When applying the binary splitting method you get a linearly convergent cost of only ~3.1 
which is the lowest of all the Catalan binary splitting methods. 
 
Algorithm: Binary splitting method for Catalan – Pilehrood (2010-short) 

 𝑠𝑒𝑡 𝑚 =
௔ା௕

ଶ
 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 

 P(a,b)=P(a,m)Q(m,b)+P(m,b)R(a,m) 
 Q(a,b)=Q(a,m)Q(m,b) 
 R(a,b)=R(a,m)R(m,b) 
   
 And: 

P(b-1,b)= 580b2-184b+15 
Q(b-1,b)=9(6b-1)2(6b-5)2 
R(b-1,b)=32b3(2b-1)  

Algorithm 25 
 
You continue this recursive breakdown until a+1=b and let the formula reverse bottom up.  
 
In the end, you find G by: 
 

𝐺 =
ଵ

ଶ

௉(଴,௡)

ொ(଴,௡)
+ 𝑂((

଻ଶଽ

ସ
)ି௡)      (202) 

 

For n terms, the error is 𝑂((
଻ଶଽ

ସ
)ି௡) and for a given precision, P you need: 

 

𝑛 = ቜ𝑃
୪୬ (ଵ଴)

୪୬ (
ళమవ

ర
)
ቝ        (203) 

 
Pilehrood also has a long version formula: 
 

𝐺 = −
ଵ

଺ସ
∑

(ିଶହ଺)ೖ൫ସଵଽ଼ସ଴௞లିଽଵହସହ଺௞ఱା଻଼ଶ଼ସ଼௞రିଷଷଶ଼଴଴௞యା଻ଷଶହ మି଻଼଴଴௞ାଷଵହ൯

௞య(ଶ௞ିଵ)(ସ௞ିଵ)మ(ସ௞ିଷ)మቀ
଼௞
ସ௞

ቁ
మ

ቀ
ଶ௞
௞

ቁ

ஶ
௞ୀଵ  (204) 

 
Which have a linearly convergent cost of ~4.6 which is higher than the Pilehrood short 
version.  
 
Algorithm: Binary splitting method for Catalan – Pilehrood (2010-long) 

 𝑠𝑒𝑡 𝑚 =
௔ା௕

ଶ
 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 

 P(a,b)=P(a,m)Q(m,b)+P(m,b)R(a,m) 
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 Q(a,b)=Q(a,m)Q(m,b) 
 R(a,b)=R(a,m)R(m,b) 
   
 And: 

P(b-1,b)=(-1)b(419840𝑏଺ − 915456𝑏ହ + 782848𝑏ସ − 332800𝑏ଷ + 73256𝑏ଶ − 7800𝑏 + 315) 
Q(b-1,b)=(8b-1)2(8b-3)2(8b-5)2(8b-7)2 
R(b-1,b)=32b3(2b-1)(4b-1)2(4b-3)2  

Algorithm 26 
 
You continue this recursive breakdown until a+1=b and let the formula reverse bottom up.  
 
In the end, you find G by: 
 

𝐺 = −
ଵ

ଶ

௉(଴,௡)

ொ(଴,௡)
+ 𝑂(1024ି௡)      (205) 

 
For n terms the error is 𝑂(1024ି௡) and for a given precision, P you need: 
 

𝑛 = ቒ𝑃
୪୬ (ଵ଴)

୪୬ (ଵ଴ଶସ)
ቓ       (206) 

 
 
Comparison of the Catalan Methods 
We have outlined quite a few methods for calculating the Catalan constant. To get an 
overview of the different methods you can look at the below table that outlines the name, 
implementation type, error, and precision requirement. 
 
Method Implementation Error N(P), 

P=precision 
Ramanujan-I Series O(4-n) 1.661P 
Ramanujan-II Series O(2-4) 3.322P 
Broadhurst Series O(16-n) 0.830P 
Lupas Binary Splitting O(4-n) 1.661P 
Guillera-2008 Binary-Splitting O(8-n) 1.107P 
Guillera-2019 Binary-Splitting O((

ଵଽ଺଼ଷ

଺ସ
)ି௡) 0.402P 

Pilehrood-short Binary-Splitting O((
଻ଶଽ

ସ
)ି௡) 0.442P 

Pilehrood-long Binary-Splitting O(1024-n) 0.332P 
 
Not surprisingly the performance depends heavily on the convergence speed and 
implementation type e.g. Series or binary splitting method as shown in the next section. 
 
Catalan Constant Performance  
Not surprisingly the linearly convergent cost predicts the performance of the method. The 
clear winner is the Pilehrood binary splitting method from 2010. It outperforms the others 
significantly. Furthermore, a two-way multi-threaded version further improves the 
performance by 30-40%. The Pilehrood method is 40-50% faster than Guillera 2019 method 
and 90-100% faster than Guillera 2008 method. Comparing Pilehrood and Lucas, Pilehrood is 
more than 5 times faster. If we compare the Binary splitting method against the classical 
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series formula the binary splitting version is several magnitudes faster and among the 
classical series the Broadhurst method is by far the fastest. 
 
 

 
Figure 10 Catalan Constant Performance chart 
 
Recommendation for the Catalan constant 
Based on the performance chart and ease of implementation I recommend the Pilehrood 2010 
short version as the preferred binary splitting method. Also if performance is required then 
use or implement a threaded version of the Pilehrood method. It is very easy to create a 2, 3, 
4, or more core-threaded version of the binary splitting method. If we only want a classical 
method then I recommend the Broadhurst method. 
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Apéry’s constant ζ(3) 
 
Is the common short name for the ζ(3) value. This is a specialized formula for the ζ(3) instead 
of using the more general computation of ζ(s) in [6]. As I mentioned in [6] there has been 
researched into finding a formula, series, etc. for the odd integer’s values of the zeta function.   
One of them is the value of ζ(3). There is two formula that comes to mind and these are [4]:  
 

 Amdeberhan-Zeilberger series 
 Wedeniwski series 

 
Amdeberhan-Zeilberger series 
 
This series is given by Amdeberhan-Zeilberger back in 1997. 
 

ζ(3) =
ଵ

଺ସ
∑

(ିଵ)ೖ(ଶ଴ହ௞మାଶହ଴௞ା଻଻)(௞!)భబ

(ଶ௞ାଵ)ఱ
ஶ
௞ୀ଴     (207) 

 
Now by now, we should have learned that the most efficient computation is by using the 
binary splitting method. 
 
Algorithm: Binary splitting method for ζ(3) (1997) 

 𝑠𝑒𝑡 𝑚 =
௔ା௕

ଶ
 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 

 P(a,b)=P(a,m)Q(m,b)+P(m,b)R(a,m) 
 Q(a,b)=Q(a,m)Q(m,b) 
 R(a,b)=R(a,m)R(m,b) 
   
 And: 

P(b-1,b)=(-1)b(205b2+250b+77)b5 
Q(b-1,b)=32(2b+1)5 
R(b-1,b)=b5  

Algorithm 27 
 
And then 
  

ζ(3) =
௉(଴,௡)ା଻଻ொ(଴,௡)

଺ସ (଴,௡)
+ 𝑂(1024ି௡)     (208) 

 
Which have a linearly convergent cost of ~2.89 which is slightly higher than the next 
Wedeniwski method.  
 
For n terms the error is 𝑂(1024ି௡) and for a given precision, P you need: 
 

𝑛 = ቒ𝑃
୪୬ (ଵ଴)

୪୬ (ଵ଴ଶସ)
ቓ       (209) 

 
 
Wedeniwski series 
This series is given by Amdeberhan-Zeilberger back in 1997. 
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ζ(3) =
ଵ

ଶସ
∑

(ିଵ)ೖ(126392௞ఱାସଵଶ଻଴଼௞రାହଷଵହ଻଼௞యାଷଷ଺ଷ଺଻௞మା104000𝑘ାଵଶ଺ସଷ)((ଶ௞ାଵ)!(ଶ௞)!௞!)య

(ଷ௞ାଶ)!(ସ௞ାଷ)!య
ஶ
௞ୀ଴  (210) 

 
Algorithm: Wedeniwski Binary splitting method for ζ(3) (1998) 

 𝑠𝑒𝑡 𝑚 =
௔ା௕

ଶ
 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 

 P(a,b)=P(a,m)Q(m,b)+P(m,b)R(a,m) 
 Q(a,b)=Q(a,m)Q(m,b) 
 R(a,b)=R(a,m)R(m,b) 
   
 And: 

P(b-1,b)=(-1)b(126392b5+412708b4+531578b3+336367b2+104000b+12463)b5(2b-1)3 
Q(b-1,b)=24(3b+1)(3b+2)(4b+1)3(4b+3)3 
R(b-1,b)=b5(2b-1)3  

Algorithm 28 
 
And then 
  

ζ(3) =
௉(଴,௡)ାଵଶସ଺ (଴,௡)

ଵ଴ଷ଺଼ (଴,௡)
+ 𝑂(110592ି௡)    (211) 

 
Which have a linearly convergent cost of ~2.78 which is slightly lower than the Amdeberhan-
Zeilberger method.  You should expect close to the same performance for both methods. 
 
For n terms the error is 𝑂(110592ି௡) and for a given precision, P you need: 
 

𝑛 = ቒ𝑃
୪୬ (ଵ଴)

୪୬ (ଵଵ଴ହଽଶ)
ቓ       (212) 

 
 
Apéry Constant ζ(3) performance 
Both Binary splitting methods outperform the general zeta function implementation. It seems 
that the Wedeniwski method has a slight edge over the Amdeberhan. This was expected since 
the linearly convergent cost is 2.78 for Wedeniwski versus 2.89 for Amdeberhan-Zeilberger.  
Furthermore, Wedeniwski only needs ~0.198*Precision terms versus ~0.332*Precision terms 
for Amdeberhan-Zeilberger, However, the computation of the P(b-1,b), Q(b-1.b) and R(b-
1,b) is more complicated for the Wedeniwski method. 
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Figure 11 Apéry Constant Performance 
 
Recommendation for the constant ζ(3) 
I recommend the following: 

1) It is clear that if you are serious you would implement one of the binary splitting 
methods.    

2) The general zeta(s) function is not recommended for the computation of the Apéry 
constant ζ (3). 

3) Wedeniwski is slightly faster but Amdeberhan-Zeilberger is simpler to implement. 
4) Implement the threaded version for the binary splitting method if speed is of the 

essence. 
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Appendix 
 
A summary table of the preferred method for arbitrary precision arithmetic. 
 
 Prefer method 
Integer arithmetic  
Addition School book addition 
Subtraction School book subtraction 
Multiplication Linear convolution for a smaller number, otherwise 

FFT 
Division Use floating-point division 
Remainder If 

௔೙

௕೘
= 𝑐௞ then 𝑟𝑒𝑚 = 𝑎௡ − 𝑏௠ ∙ 𝑐௞ 

Floating point arithmetic  
Addition School book addition 
Subtraction School book subtraction 
Multiplication Linear convolution for smaller numbers otherwise 

FFT  
Division Newton or Halley iteration 

√𝑥 Newton or Halley iteration 

√𝑥
೙  Newton iteration 
xy 𝑥௬ = 𝑒௬∙୪୬ (௫) or simpler if the argument allows 
Elementary functions  
ex Sinh(x) Taylor series with argument reduction and 

coefficient scaling 
Log(x) For smaller numbers Taylor series for log(x) with 

argument reduction and coefficient scaling. For 
larger numbers the AGM method 

Trigonometric functions  
Sin(x) Taylor series with argument reduction and coefficient 

scaling 
Cos(X) Use cos(𝑥) = ඥ1 − 𝑠𝑖𝑛ଶ(𝑥) 
Tan(x) Use tan(x) =

ୱ୧୬ (୶)

ඥଵିୱ୧୬మ(୶)
 

Arcsin(x) Taylor series with argument reduction and coefficient 
scaling 

Arccos(x) Use Arccos(x) =
஠

ଶ
− Arcsin(x) 

Arctan(x) Taylor series with argument reduction and coefficient 
scaling 

Hyperbolic functions  
Sinh(x) Taylor series with argument reduction and coefficient 

scaling 
Cosh(x) Taylor series with argument reduction and coefficient 

scaling 
Tanh(x) Use tanh(x) =

ୣమ౮ିଵ

ୣమ౮ାଵ
 

Arcsinh(x) Use Arcsinh(x) = ln ቀx + ඥxଶ + 1ቁ 

Arccosh(x) Use Arccosh(x) = ln൫x + √xଶ − 1൯ 



The Math behind arbitrary precision 
 

23 February 2023       www.hvks.com/Numerical/arbitrary_precision.html Page 129 
 

Arctanh(x) Use Arctanh(x) =
ଵ

ଶ
ln ቀ

ଵା୶

ଵି୶
ቁ 

Special functions  
Gamma function Integration by parts 
Beta function 

𝐵(𝑧, 𝑤) =
Γ(z)Γ(w)

Γ(z + w)
 

Error Function erf(𝑥)

=
2𝑥𝑒ି௫మ

√𝜋
෍

(2𝑥ଶ)௡

(2𝑛 + 1)!!

ஶ

௡ୀ଴

, ‼ 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑜𝑢𝑏𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 

Lamber W function Boyd’s iteration: 
 𝑤௡ାଵ =

௪೙

ଵା௪೙
(1 + ln (

௫

௪೙
)) 

Zeta function An optimized version of P. Borwein algorithm 3: 

𝜁(𝑠) =
−1

2௡(1 − 2ଵି௦)
෍

𝑒௝

(𝑗 + 1)௦

ଶ௡ିଵ

௝ୀ଴

 

Where: 

𝑒௝ = (−1)௝((෍
𝑛!

𝑘! (𝑛 − 𝑘)!
)

௝ି௡

௞ୀ଴

− 2௡) 

Constants  
e Binary splitting method 
Ln(2) Spigot algorithm, alternatively you can use log(2) 
Ln(10) Spigot algorithm, alternatively you can use log(10) 
π Chudnovsky Binary splitting method 
Special Constants  
Euler-Mascheroni Binary Splitting Method 
Catalan Pilehrood 2010 short version Binary Splitting 

Method 
Apéry (zeta(3)) Amdeberhan-Zeilberger Binary Splitting Method 
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